Reusable workflows

Nipype doesn't just allow you to create your own workflows. It also already comes with predefined workflows, developed by the community, for the community. For a full list of all workflows, look under the Workflows section of the main homepage.

But to give you a short overview, there are workflows about:

Functional MRI workflows:

  • from fsl about resting state, fixed_effects, modelfit, featreg, susan_smooth and many more
  • from spm about DARTEL and VBM

Structural MRI workflows

  • from ants about ANTSBuildTemplate and antsRegistrationBuildTemplate
  • from freesurfer about bem, recon and tessellation

Diffusion workflows:

  • from camino about connectivity_mapping, diffusion and group_connectivity
  • from dipy about denoise
  • from fsl about artifacts, dti, epi, tbss and many more
  • from mrtrix about connectivity_mapping, diffusion and group_connectivity

How to load a workflow from the Nipype library

Let's consider the example of a functional MRI workflow, that uses FSL's Susan algorithm to smooth some data. To load such a workflow, we only need the following command:


In [ ]:
from nipype.workflows.fmri.fsl.preprocess import create_susan_smooth
smoothwf = create_susan_smooth()

Once a workflow is created, we need to make sure that the mandatory inputs are specified. To see which inputs we have to define, we can use the command:

create_susan_smooth?

Which gives us the output:

Create a SUSAN smoothing workflow

Parameters
----------
Inputs:
    inputnode.in_files : functional runs (filename or list of filenames)
    inputnode.fwhm : fwhm for smoothing with SUSAN
    inputnode.mask_file : mask used for estimating SUSAN thresholds (but not for smoothing)

Outputs:
    outputnode.smoothed_files : functional runs (filename or list of filenames)

As we can see, we also need a mask file. For the sake of convenience, let's take the mean image of a functional image and threshold it at the 50% percentile:


In [ ]:
!fslmaths /data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz \
    -Tmean -thrP 50 /output/sub-01_ses-test_task-fingerfootlips_mask.nii.gz

Now, we're ready to finish up our smooth workflow.


In [ ]:
smoothwf.inputs.inputnode.in_files = '/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'
smoothwf.inputs.inputnode.mask_file = '/output/sub-01_ses-test_task-fingerfootlips_mask.nii.gz'
smoothwf.inputs.inputnode.fwhm = 4
smoothwf.base_dir = '/output'

Before we run it, let's visualize the graph:


In [ ]:
from nilearn import plotting
%matplotlib inline
import matplotlib.pyplot as plt
from IPython.display import Image
smoothwf.write_graph(graph2use='colored', format='png', simple_form=True)
Image(filename='/output/susan_smooth/graph.png')

And we're ready to go:


In [ ]:
smoothwf.run('MultiProc', plugin_args={'n_procs': 4})

Once it's finished, we can look at the results:


In [ ]:
%%bash
fslmaths /data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz -Tmean fmean.nii.gz
fslmaths /output/susan_smooth/smooth/mapflow/_smooth0/sub-01_ses-test_task-fingerfootlips_bold_smooth.nii.gz \
    -Tmean smean.nii.gz

In [ ]:
from nilearn import image, plotting

In [ ]:
plotting.plot_epi(
    'fmean.nii.gz', title="mean (no smoothing)", display_mode='z',
    cmap='gray', cut_coords=(-45, -30, -15, 0, 15));
plotting.plot_epi(
    'smean.nii.gz', title="mean (susan smoothed)", display_mode='z',
    cmap='gray', cut_coords=(-45, -30, -15, 0, 15));

Inspect inputs and outputs of a loaded or created workflow

If you want to see a summary of all possible inputs and outputs of a given workflow, use the _get_inputs() and the _get_outputs() function.


In [ ]:
# Show all possible inputs
smoothwf._get_inputs()

In [ ]:
# Show all possible outputs
smoothwf._get_outputs()

How to change node parameters from existing workflows

What if we want to change certain parameters of a loaded or already existing workflow? Let's first get the names of all the nodes in the workflow:


In [ ]:
print(smoothwf.list_node_names())

Ok. Hmm, what if we want to change the 'median' node, from 50% to 99%? For this, we first need to get the node.


In [ ]:
median = smoothwf.get_node('median')

Now that we have the node, we can change its value as we want:


In [ ]:
median.inputs.op_string = '-k %s -p 99'

And we can run the workflow again...


In [ ]:
smoothwf.run('MultiProc', plugin_args={'n_procs': 4})

And now the output is:


In [ ]:
!fslmaths /output/susan_smooth/smooth/mapflow/_smooth0/sub-01_ses-test_task-fingerfootlips_bold_smooth.nii.gz \
    -Tmean mmean.nii.gz

In [ ]:
from nilearn import image, plotting

In [ ]:
plotting.plot_epi(
    'smean.nii.gz', title="mean (susan smooth)", display_mode='z',
    cmap='gray', cut_coords=(-45, -30, -15, 0, 15))
plotting.plot_epi(
    'mmean.nii.gz', title="mean (smoothed, median=99%)", display_mode='z',
    cmap='gray', cut_coords=(-45, -30, -15, 0, 15))