This example takes scikit-learn's MNIST SVM example and incorportates Verta's Client integration.
In [1]:
HOST = "app.verta.ai"
PROJECT_NAME = "MNIST Multiclassification"
EXPERIMENT_NAME = "SVM"
In [2]:
# import os
# os.environ['VERTA_EMAIL'] =
# os.environ['VERTA_DEV_KEY'] =
In [3]:
from verta import Client
client = Client(HOST)
proj = client.set_project(PROJECT_NAME)
expt = client.set_experiment(EXPERIMENT_NAME)
In [4]:
from __future__ import print_function
from sklearn import datasets, svm, metrics
from sklearn.model_selection import train_test_split
In [5]:
digits = datasets.load_digits()
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
X_train, X_test, y_train, y_test = train_test_split(
data, digits.target, test_size=0.5, shuffle=False)
In [6]:
classifier = svm.SVC(gamma=0.001)
In [7]:
run = client.set_experiment_run()
In [8]:
import verta.integrations.sklearn
classifier.fit(X_train, y_train, run=run)
In [9]:
run