In [1]:
%jsroot OFF
In [2]:
gSystem->AddIncludePath("-I$ALICE_ROOT/include/"); //couldn't add include path in .rootr
AliDrawStyle::SetDefaults();
AliDrawStyle::ApplyStyle("figTemplate");
TCanvas *canvasDraw = new TCanvas("canvasDraw","canvasDraw",900,700);
TTree *treeCache=0,*tree=0;
Info in <AliDrawStyle::ApplyStyle>: figTemplate
In [3]:
.L $AliRoot_SRC/STAT/Macros/AliNDFunctionInterface.cxx+
In [4]:
AliExternalInfo info;
tree = info.GetChain("QA.TPC", "LHC17*", "cpass1_pass1", "QA.EVS;QA.rawTPC");
tree->SetAlias("interactionRate", "QA.EVS.interactionRate");
///
tree->SetAlias("qmaxQASum", "Sum$(qmaxQA.fElements*((abs(qmaxQA.fElements-40)<20)))/Sum$((abs(qmaxQA.fElements-40)<20))");
tree->SetAlias("qmaxQASumIn", "Sum$(qmaxQA.fElements*((Iteration$<36&&abs(qmaxQA.fElements-40)<20)))/Sum$((Iteration$<36&&abs(qmaxQA.fElements-40)<20))");
tree->SetAlias("qmaxQASumOut", "Sum$(qmaxQA.fElements*((Iteration$>=36&&abs(qmaxQA.fElements-40)<20)))/Sum$((Iteration$>=36&&abs(qmaxQA.fElements-40)<20))");
tree->SetAlias("qmaxQASumR", "qmaxQASumIn/qmaxQASum");
tree->SetAlias("meanMIPeleR", "meanMIPele/meanMIP");
tree->SetAlias("bz0", "bz+rndm*0.0001");
tree->SetMarkerStyle(21); tree->SetMarkerSize(0.5);
Info in <AliExternalInfo::ReadConfig>: Path: $ALICE_ROOT/STAT/Macros/AliExternalInfo.cfg /data/alicesw6/sw/ubuntu1604_x86-64/AliRoot/0_ROOT6-1/STAT/Macros/AliExternalInfo.cfg
Info in <AliExternalInfo::SetupVariables>: Information will be stored/retrieved in/from /homeold/miranov/AliExternalInfoCache//data/2017/LHC17*/cpass1_pass1/
Info in <AliExternalInfo::GetChain>: Files to add to chain: /homeold/miranov/AliExternalInfoCache//data/2017/LHC17c/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17e/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17f/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17g/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17h/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17i/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17j/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17k/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17l/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17m/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17n/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17o/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17p/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17q/cpass1_pass1/TPC_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17r/cpass1_pass1/TPC_trending.root
Info in <AliExternalInfo::SetupVariables>: Information will be stored/retrieved in/from /homeold/miranov/AliExternalInfoCache//data/2017/LHC17*/cpass1_pass1/
Info in <AliExternalInfo::AddChain>: Add to internal Chain: /homeold/miranov/AliExternalInfoCache//data/2017/LHC17*/cpass1_pass1/TPC_trending.root
Info in <AliExternalInfo::AddChain>: with tree name: tpcQA,trending
Error in <TChainIndex::TChainIndex>: The indices in files of this chain aren't sorted.
Error in <TTreePlayer::BuildIndex>: Creating a TChainIndex unsuccessful - switching to TTreeIndex
Collection name='metaTable', class='THashList', size=1490
OBJ: TNamed DCAr_Status.html %d<run>/dca_and_phi.png
OBJ: TNamed DCAz_Status.html %d<run>/dca_and_phi.png
OBJ: TNamed MIPattachSlopeA.AxisTitle dEdx(MIP/50) Attach
OBJ: TNamed MIPattachSlopeA.Description TPC standard QA variables. Class TPC dEdx Attach ASide
OBJ: TNamed MIPattachSlopeA.Legend dEdx Attach A side
OBJ: TNamed MIPattachSlopeA.Title dEdx Attach A side
OBJ: TNamed MIPattachSlopeA.class TPC dEdx Attach ASide
OBJ: TNamed MIPattachSlopeC.AxisTitle dEdx(MIP/50) Attach
OBJ: TNamed MIPattachSlopeC.Description TPC standard QA variables. Class TPC dEdx Attach CSide
OBJ: TNamed MIPattachSlopeC.Legend dEdx Attach C side
OBJ: TNamed MIPattachSlopeC.Title dEdx Attach C side
OBJ: TNamed MIPattachSlopeC.class TPC dEdx Attach CSide
OBJ: TNamed PID_Status.html %d<run>/TPC_dEdx_track_info.png
OBJ: TNamed TPC_Occ_IROC..AxisTitle Occupancy
OBJ: TNamed TPC_Occ_IROC..Description TPC standard QA variables. Class TPC Occ CSide IROC Class:TVectorT<float>
OBJ: TNamed TPC_Occ_IROC..Legend Occ. C side IROC
OBJ: TNamed TPC_Occ_IROC..Title Occupancy C side IROC
OBJ: TNamed TPC_Occ_IROC..class TPC Occ CSide IROC Class:TVectorT<float>
OBJ: TNamed TPC_Occ_OROC..AxisTitle Occupancy
OBJ: TNamed TPC_Occ_OROC..Description TPC standard QA variables. Class TPC Occ CSide OROC Class:TVectorT<float>
OBJ: TNamed TPC_Occ_OROC..Legend Occ. C side OROC
OBJ: TNamed TPC_Occ_OROC..Title Occupancy C side OROC
OBJ: TNamed TPC_Occ_OROC..class TPC Occ CSide OROC Class:TVectorT<float>
OBJ: TNamed bz.AxisTitle z(cm)
OBJ: TNamed bz.Description TPC standard QA variables. Class TPC Z
OBJ: TNamed bz.Legend z
OBJ: TNamed bz.Title z
OBJ: TNamed bz.class TPC Z
OBJ: TNamed dataType..AxisTitle
OBJ: TNamed dataType..Description TPC standard QA variables. Class TPC Class:TObjString
OBJ: TNamed dataType..Legend
OBJ: TNamed dataType..Title
OBJ: TNamed dataType..class TPC Class:TObjString
OBJ: TNamed dcarAP0.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcarAP0.Description TPC standard QA variables. Class TPC DCAr ASide
OBJ: TNamed dcarAP0.Legend DCA_{xy} A side
OBJ: TNamed dcarAP0.Title DCA_{xy} A side
OBJ: TNamed dcarAP0.class TPC DCAr ASide
OBJ: TNamed dcarAP1.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcarAP1.Description TPC standard QA variables. Class TPC DCAr ASide
OBJ: TNamed dcarAP1.Legend DCA_{xy} A side
OBJ: TNamed dcarAP1.Title DCA_{xy} A side
OBJ: TNamed dcarAP1.class TPC DCAr ASide
OBJ: TNamed dcarCP0.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcarCP0.Description TPC standard QA variables. Class TPC DCAr CSide
OBJ: TNamed dcarCP0.Legend DCA_{xy} C side
OBJ: TNamed dcarCP0.Title DCA_{xy} C side
OBJ: TNamed dcarCP0.class TPC DCAr CSide
OBJ: TNamed dcarCP1.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcarCP1.Description TPC standard QA variables. Class TPC DCAr CSide
OBJ: TNamed dcarCP1.Legend DCA_{xy} C side
OBJ: TNamed dcarCP1.Title DCA_{xy} C side
OBJ: TNamed dcarCP1.class TPC DCAr CSide
OBJ: TNamed dcar_negA_0.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_negA_0.Description TPC standard QA variables. Class TPC DCAr ASide Neg
OBJ: TNamed dcar_negA_0.Legend DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_0.Title DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_0.class TPC DCAr ASide Neg
OBJ: TNamed dcar_negA_0_Err.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_negA_0_Err.Description TPC standard QA variables. Class TPC Err DCAr ASide Neg
OBJ: TNamed dcar_negA_0_Err.Legend DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_0_Err.Title #sigma DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_0_Err.class TPC Err DCAr ASide Neg
OBJ: TNamed dcar_negA_1.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_negA_1.Description TPC standard QA variables. Class TPC DCAr ASide Neg
OBJ: TNamed dcar_negA_1.Legend DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_1.Title DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_1.class TPC DCAr ASide Neg
OBJ: TNamed dcar_negA_1_Err.AxisTitle x_{G} DCA_{xy}(cm)
OBJ: TNamed dcar_negA_1_Err.Description TPC standard QA variables. Class TPC Err FitGX DCAr ASide Neg
OBJ: TNamed dcar_negA_1_Err.Legend x_{G} DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_1_Err.Title #sigma x_{G} DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_1_Err.class TPC Err FitGX DCAr ASide Neg
OBJ: TNamed dcar_negA_2.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_negA_2.Description TPC standard QA variables. Class TPC DCAr ASide Neg
OBJ: TNamed dcar_negA_2.Legend DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_2.Title DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_2.class TPC DCAr ASide Neg
OBJ: TNamed dcar_negA_2_Err.AxisTitle y_{G} DCA_{xy}(cm)
OBJ: TNamed dcar_negA_2_Err.Description TPC standard QA variables. Class TPC Err FitGY DCAr ASide Neg
OBJ: TNamed dcar_negA_2_Err.Legend y_{G} DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_2_Err.Title #sigma y_{G} DCA_{xy} A side Q<0
OBJ: TNamed dcar_negA_2_Err.class TPC Err FitGY DCAr ASide Neg
OBJ: TNamed dcar_negA_chi2.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_negA_chi2.Description TPC standard QA variables. Class TPC Chi2 DCAr Neg
OBJ: TNamed dcar_negA_chi2.Legend DCA_{xy} Q<0
OBJ: TNamed dcar_negA_chi2.Title #chi2 DCA_{xy} Q<0
OBJ: TNamed dcar_negA_chi2.class TPC Chi2 DCAr Neg
OBJ: TNamed dcar_negC_0.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_negC_0.Description TPC standard QA variables. Class TPC DCAr CSide Neg
OBJ: TNamed dcar_negC_0.Legend DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_0.Title DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_0.class TPC DCAr CSide Neg
OBJ: TNamed dcar_negC_0_Err.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_negC_0_Err.Description TPC standard QA variables. Class TPC Err DCAr CSide Neg
OBJ: TNamed dcar_negC_0_Err.Legend DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_0_Err.Title #sigma DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_0_Err.class TPC Err DCAr CSide Neg
OBJ: TNamed dcar_negC_1.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_negC_1.Description TPC standard QA variables. Class TPC DCAr CSide Neg
OBJ: TNamed dcar_negC_1.Legend DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_1.Title DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_1.class TPC DCAr CSide Neg
OBJ: TNamed dcar_negC_1_Err.AxisTitle x_{G} DCA_{xy}(cm)
OBJ: TNamed dcar_negC_1_Err.Description TPC standard QA variables. Class TPC Err FitGX DCAr CSide Neg
OBJ: TNamed dcar_negC_1_Err.Legend x_{G} DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_1_Err.Title #sigma x_{G} DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_1_Err.class TPC Err FitGX DCAr CSide Neg
OBJ: TNamed dcar_negC_2.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_negC_2.Description TPC standard QA variables. Class TPC DCAr CSide Neg
OBJ: TNamed dcar_negC_2.Legend DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_2.Title DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_2.class TPC DCAr CSide Neg
OBJ: TNamed dcar_negC_2_Err.AxisTitle y_{G} DCA_{xy}(cm)
OBJ: TNamed dcar_negC_2_Err.Description TPC standard QA variables. Class TPC Err FitGY DCAr CSide Neg
OBJ: TNamed dcar_negC_2_Err.Legend y_{G} DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_2_Err.Title #sigma y_{G} DCA_{xy} C side Q<0
OBJ: TNamed dcar_negC_2_Err.class TPC Err FitGY DCAr CSide Neg
OBJ: TNamed dcar_negC_chi2.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_negC_chi2.Description TPC standard QA variables. Class TPC Chi2 DCAr Neg
OBJ: TNamed dcar_negC_chi2.Legend DCA_{xy} Q<0
OBJ: TNamed dcar_negC_chi2.Title #chi2 DCA_{xy} Q<0
OBJ: TNamed dcar_negC_chi2.class TPC Chi2 DCAr Neg
OBJ: TNamed dcar_posA_0.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_posA_0.Description TPC standard QA variables. Class TPC DCAr ASide Pos
OBJ: TNamed dcar_posA_0.Legend DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_0.Title DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_0.class TPC DCAr ASide Pos
OBJ: TNamed dcar_posA_0_Err.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_posA_0_Err.Description TPC standard QA variables. Class TPC Err DCAr ASide Pos
OBJ: TNamed dcar_posA_0_Err.Legend DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_0_Err.Title #sigma DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_0_Err.class TPC Err DCAr ASide Pos
OBJ: TNamed dcar_posA_1.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_posA_1.Description TPC standard QA variables. Class TPC DCAr ASide Pos
OBJ: TNamed dcar_posA_1.Legend DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_1.Title DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_1.class TPC DCAr ASide Pos
OBJ: TNamed dcar_posA_1_Err.AxisTitle x_{G} DCA_{xy}(cm)
OBJ: TNamed dcar_posA_1_Err.Description TPC standard QA variables. Class TPC Err FitGX DCAr ASide Pos
OBJ: TNamed dcar_posA_1_Err.Legend x_{G} DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_1_Err.Title #sigma x_{G} DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_1_Err.class TPC Err FitGX DCAr ASide Pos
OBJ: TNamed dcar_posA_2.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_posA_2.Description TPC standard QA variables. Class TPC DCAr ASide Pos
OBJ: TNamed dcar_posA_2.Legend DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_2.Title DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_2.class TPC DCAr ASide Pos
OBJ: TNamed dcar_posA_2_Err.AxisTitle y_{G} DCA_{xy}(cm)
OBJ: TNamed dcar_posA_2_Err.Description TPC standard QA variables. Class TPC Err FitGY DCAr ASide Pos
OBJ: TNamed dcar_posA_2_Err.Legend y_{G} DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_2_Err.Title #sigma y_{G} DCA_{xy} A side Q>0
OBJ: TNamed dcar_posA_2_Err.class TPC Err FitGY DCAr ASide Pos
OBJ: TNamed dcar_posA_chi2.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_posA_chi2.Description TPC standard QA variables. Class TPC Chi2 DCAr Pos
OBJ: TNamed dcar_posA_chi2.Legend DCA_{xy} Q>0
OBJ: TNamed dcar_posA_chi2.Title #chi2 DCA_{xy} Q>0
OBJ: TNamed dcar_posA_chi2.class TPC Chi2 DCAr Pos
OBJ: TNamed dcar_posC_0.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_posC_0.Description TPC standard QA variables. Class TPC DCAr CSide Pos
OBJ: TNamed dcar_posC_0.Legend DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_0.Title DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_0.class TPC DCAr CSide Pos
OBJ: TNamed dcar_posC_0_Err.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_posC_0_Err.Description TPC standard QA variables. Class TPC Err DCAr CSide Pos
OBJ: TNamed dcar_posC_0_Err.Legend DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_0_Err.Title #sigma DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_0_Err.class TPC Err DCAr CSide Pos
OBJ: TNamed dcar_posC_1.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_posC_1.Description TPC standard QA variables. Class TPC DCAr CSide Pos
OBJ: TNamed dcar_posC_1.Legend DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_1.Title DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_1.class TPC DCAr CSide Pos
OBJ: TNamed dcar_posC_1_Err.AxisTitle x_{G} DCA_{xy}(cm)
OBJ: TNamed dcar_posC_1_Err.Description TPC standard QA variables. Class TPC Err FitGX DCAr CSide Pos
OBJ: TNamed dcar_posC_1_Err.Legend x_{G} DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_1_Err.Title #sigma x_{G} DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_1_Err.class TPC Err FitGX DCAr CSide Pos
OBJ: TNamed dcar_posC_2.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_posC_2.Description TPC standard QA variables. Class TPC DCAr CSide Pos
OBJ: TNamed dcar_posC_2.Legend DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_2.Title DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_2.class TPC DCAr CSide Pos
OBJ: TNamed dcar_posC_2_Err.AxisTitle y_{G} DCA_{xy}(cm)
OBJ: TNamed dcar_posC_2_Err.Description TPC standard QA variables. Class TPC Err FitGY DCAr CSide Pos
OBJ: TNamed dcar_posC_2_Err.Legend y_{G} DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_2_Err.Title #sigma y_{G} DCA_{xy} C side Q>0
OBJ: TNamed dcar_posC_2_Err.class TPC Err FitGY DCAr CSide Pos
OBJ: TNamed dcar_posC_chi2.AxisTitle DCA_{xy}(cm)
OBJ: TNamed dcar_posC_chi2.Description TPC standard QA variables. Class TPC Chi2 DCAr Pos
OBJ: TNamed dcar_posC_chi2.Legend DCA_{xy} Q>0
OBJ: TNamed dcar_posC_chi2.Title #chi2 DCA_{xy} Q>0
OBJ: TNamed dcar_posC_chi2.class TPC Chi2 DCAr Pos
OBJ: TNamed dcaz_negA_0.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_negA_0.Description TPC standard QA variables. Class TPC DCAz ASide Neg
OBJ: TNamed dcaz_negA_0.Legend DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_0.Title DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_0.class TPC DCAz ASide Neg
OBJ: TNamed dcaz_negA_0_Err.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_negA_0_Err.Description TPC standard QA variables. Class TPC Err DCAz ASide Neg
OBJ: TNamed dcaz_negA_0_Err.Legend DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_0_Err.Title #sigma DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_0_Err.class TPC Err DCAz ASide Neg
OBJ: TNamed dcaz_negA_1.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_negA_1.Description TPC standard QA variables. Class TPC DCAz ASide Neg
OBJ: TNamed dcaz_negA_1.Legend DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_1.Title DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_1.class TPC DCAz ASide Neg
OBJ: TNamed dcaz_negA_1_Err.AxisTitle x_{G} DCA_{z}(cm)
OBJ: TNamed dcaz_negA_1_Err.Description TPC standard QA variables. Class TPC Err FitGX DCAz ASide Neg
OBJ: TNamed dcaz_negA_1_Err.Legend x_{G} DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_1_Err.Title #sigma x_{G} DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_1_Err.class TPC Err FitGX DCAz ASide Neg
OBJ: TNamed dcaz_negA_2.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_negA_2.Description TPC standard QA variables. Class TPC DCAz ASide Neg
OBJ: TNamed dcaz_negA_2.Legend DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_2.Title DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_2.class TPC DCAz ASide Neg
OBJ: TNamed dcaz_negA_2_Err.AxisTitle y_{G} DCA_{z}(cm)
OBJ: TNamed dcaz_negA_2_Err.Description TPC standard QA variables. Class TPC Err FitGY DCAz ASide Neg
OBJ: TNamed dcaz_negA_2_Err.Legend y_{G} DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_2_Err.Title #sigma y_{G} DCA_{z} A side Q<0
OBJ: TNamed dcaz_negA_2_Err.class TPC Err FitGY DCAz ASide Neg
OBJ: TNamed dcaz_negA_chi2.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_negA_chi2.Description TPC standard QA variables. Class TPC Chi2 DCAz Neg
OBJ: TNamed dcaz_negA_chi2.Legend DCA_{z} Q<0
OBJ: TNamed dcaz_negA_chi2.Title #chi2 DCA_{z} Q<0
OBJ: TNamed dcaz_negA_chi2.class TPC Chi2 DCAz Neg
OBJ: TNamed dcaz_negC_0.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_negC_0.Description TPC standard QA variables. Class TPC DCAz CSide Neg
OBJ: TNamed dcaz_negC_0.Legend DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_0.Title DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_0.class TPC DCAz CSide Neg
OBJ: TNamed dcaz_negC_0_Err.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_negC_0_Err.Description TPC standard QA variables. Class TPC Err DCAz CSide Neg
OBJ: TNamed dcaz_negC_0_Err.Legend DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_0_Err.Title #sigma DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_0_Err.class TPC Err DCAz CSide Neg
OBJ: TNamed dcaz_negC_1.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_negC_1.Description TPC standard QA variables. Class TPC DCAz CSide Neg
OBJ: TNamed dcaz_negC_1.Legend DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_1.Title DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_1.class TPC DCAz CSide Neg
OBJ: TNamed dcaz_negC_1_Err.AxisTitle x_{G} DCA_{z}(cm)
OBJ: TNamed dcaz_negC_1_Err.Description TPC standard QA variables. Class TPC Err FitGX DCAz CSide Neg
OBJ: TNamed dcaz_negC_1_Err.Legend x_{G} DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_1_Err.Title #sigma x_{G} DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_1_Err.class TPC Err FitGX DCAz CSide Neg
OBJ: TNamed dcaz_negC_2.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_negC_2.Description TPC standard QA variables. Class TPC DCAz CSide Neg
OBJ: TNamed dcaz_negC_2.Legend DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_2.Title DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_2.class TPC DCAz CSide Neg
OBJ: TNamed dcaz_negC_2_Err.AxisTitle y_{G} DCA_{z}(cm)
OBJ: TNamed dcaz_negC_2_Err.Description TPC standard QA variables. Class TPC Err FitGY DCAz CSide Neg
OBJ: TNamed dcaz_negC_2_Err.Legend y_{G} DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_2_Err.Title #sigma y_{G} DCA_{z} C side Q<0
OBJ: TNamed dcaz_negC_2_Err.class TPC Err FitGY DCAz CSide Neg
OBJ: TNamed dcaz_negC_chi2.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_negC_chi2.Description TPC standard QA variables. Class TPC Chi2 DCAz Neg
OBJ: TNamed dcaz_negC_chi2.Legend DCA_{z} Q<0
OBJ: TNamed dcaz_negC_chi2.Title #chi2 DCA_{z} Q<0
OBJ: TNamed dcaz_negC_chi2.class TPC Chi2 DCAz Neg
OBJ: TNamed dcaz_posA_0.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_posA_0.Description TPC standard QA variables. Class TPC DCAz ASide Pos
OBJ: TNamed dcaz_posA_0.Legend DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_0.Title DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_0.class TPC DCAz ASide Pos
OBJ: TNamed dcaz_posA_0_Err.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_posA_0_Err.Description TPC standard QA variables. Class TPC Err DCAz ASide Pos
OBJ: TNamed dcaz_posA_0_Err.Legend DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_0_Err.Title #sigma DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_0_Err.class TPC Err DCAz ASide Pos
OBJ: TNamed dcaz_posA_1.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_posA_1.Description TPC standard QA variables. Class TPC DCAz ASide Pos
OBJ: TNamed dcaz_posA_1.Legend DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_1.Title DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_1.class TPC DCAz ASide Pos
OBJ: TNamed dcaz_posA_1_Err.AxisTitle x_{G} DCA_{z}(cm)
OBJ: TNamed dcaz_posA_1_Err.Description TPC standard QA variables. Class TPC Err FitGX DCAz ASide Pos
OBJ: TNamed dcaz_posA_1_Err.Legend x_{G} DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_1_Err.Title #sigma x_{G} DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_1_Err.class TPC Err FitGX DCAz ASide Pos
OBJ: TNamed dcaz_posA_2.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_posA_2.Description TPC standard QA variables. Class TPC DCAz ASide Pos
OBJ: TNamed dcaz_posA_2.Legend DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_2.Title DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_2.class TPC DCAz ASide Pos
OBJ: TNamed dcaz_posA_2_Err.AxisTitle y_{G} DCA_{z}(cm)
OBJ: TNamed dcaz_posA_2_Err.Description TPC standard QA variables. Class TPC Err FitGY DCAz ASide Pos
OBJ: TNamed dcaz_posA_2_Err.Legend y_{G} DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_2_Err.Title #sigma y_{G} DCA_{z} A side Q>0
OBJ: TNamed dcaz_posA_2_Err.class TPC Err FitGY DCAz ASide Pos
OBJ: TNamed dcaz_posA_chi2.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_posA_chi2.Description TPC standard QA variables. Class TPC Chi2 DCAz Pos
OBJ: TNamed dcaz_posA_chi2.Legend DCA_{z} Q>0
OBJ: TNamed dcaz_posA_chi2.Title #chi2 DCA_{z} Q>0
OBJ: TNamed dcaz_posA_chi2.class TPC Chi2 DCAz Pos
OBJ: TNamed dcaz_posC_0.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_posC_0.Description TPC standard QA variables. Class TPC DCAz CSide Pos
OBJ: TNamed dcaz_posC_0.Legend DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_0.Title DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_0.class TPC DCAz CSide Pos
OBJ: TNamed dcaz_posC_0_Err.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_posC_0_Err.Description TPC standard QA variables. Class TPC Err DCAz CSide Pos
OBJ: TNamed dcaz_posC_0_Err.Legend DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_0_Err.Title #sigma DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_0_Err.class TPC Err DCAz CSide Pos
OBJ: TNamed dcaz_posC_1.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_posC_1.Description TPC standard QA variables. Class TPC DCAz CSide Pos
OBJ: TNamed dcaz_posC_1.Legend DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_1.Title DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_1.class TPC DCAz CSide Pos
OBJ: TNamed dcaz_posC_1_Err.AxisTitle x_{G} DCA_{z}(cm)
OBJ: TNamed dcaz_posC_1_Err.Description TPC standard QA variables. Class TPC Err FitGX DCAz CSide Pos
OBJ: TNamed dcaz_posC_1_Err.Legend x_{G} DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_1_Err.Title #sigma x_{G} DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_1_Err.class TPC Err FitGX DCAz CSide Pos
OBJ: TNamed dcaz_posC_2.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_posC_2.Description TPC standard QA variables. Class TPC DCAz CSide Pos
OBJ: TNamed dcaz_posC_2.Legend DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_2.Title DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_2.class TPC DCAz CSide Pos
OBJ: TNamed dcaz_posC_2_Err.AxisTitle y_{G} DCA_{z}(cm)
OBJ: TNamed dcaz_posC_2_Err.Description TPC standard QA variables. Class TPC Err FitGY DCAz CSide Pos
OBJ: TNamed dcaz_posC_2_Err.Legend y_{G} DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_2_Err.Title #sigma y_{G} DCA_{z} C side Q>0
OBJ: TNamed dcaz_posC_2_Err.class TPC Err FitGY DCAz CSide Pos
OBJ: TNamed dcaz_posC_chi2.AxisTitle DCA_{z}(cm)
OBJ: TNamed dcaz_posC_chi2.Description TPC standard QA variables. Class TPC Chi2 DCAz Pos
OBJ: TNamed dcaz_posC_chi2.Legend DCA_{z} Q>0
OBJ: TNamed dcaz_posC_chi2.Title #chi2 DCA_{z} Q>0
OBJ: TNamed dcaz_posC_chi2.class TPC Chi2 DCAz Pos
OBJ: TNamed deltaPt.AxisTitle p_{T}(Gev/c)
OBJ: TNamed deltaPt.Description TPC standard QA variables. Class TPC Delta Pt
OBJ: TNamed deltaPt.Legend p_{T}
OBJ: TNamed deltaPt.Title #Delta p_{T}
OBJ: TNamed deltaPt.class TPC Delta Pt
OBJ: TNamed deltaPtA.AxisTitle p_{T}(Gev/c)
OBJ: TNamed deltaPtA.Description TPC standard QA variables. Class TPC Delta Pt ASide
OBJ: TNamed deltaPtA.Legend p_{T} A side
OBJ: TNamed deltaPtA.Title #Delta p_{T} A side
OBJ: TNamed deltaPtA.class TPC Delta Pt ASide
OBJ: TNamed deltaPtA_Err.AxisTitle p_{T}(Gev/c)
OBJ: TNamed deltaPtA_Err.Description TPC standard QA variables. Class TPC Delta Err Pt
OBJ: TNamed deltaPtA_Err.Legend p_{T}
OBJ: TNamed deltaPtA_Err.Title #Delta#sigma p_{T}
OBJ: TNamed deltaPtA_Err.class TPC Delta Err Pt
OBJ: TNamed deltaPtC.AxisTitle p_{T}(Gev/c)
OBJ: TNamed deltaPtC.Description TPC standard QA variables. Class TPC Delta Pt CSide
OBJ: TNamed deltaPtC.Legend p_{T} C side
OBJ: TNamed deltaPtC.Title #Delta p_{T} C side
OBJ: TNamed deltaPtC.class TPC Delta Pt CSide
OBJ: TNamed deltaPtC_Err.AxisTitle p_{T}(Gev/c)
OBJ: TNamed deltaPtC_Err.Description TPC standard QA variables. Class TPC Delta Err Pt
OBJ: TNamed deltaPtC_Err.Legend p_{T}
OBJ: TNamed deltaPtC_Err.Title #Delta#sigma p_{T}
OBJ: TNamed deltaPtC_Err.class TPC Delta Err Pt
OBJ: TNamed deltaPt_Err.AxisTitle p_{T}(Gev/c)
OBJ: TNamed deltaPt_Err.Description TPC standard QA variables. Class TPC Delta Err Pt
OBJ: TNamed deltaPt_Err.Legend p_{T}
OBJ: TNamed deltaPt_Err.Title #Delta#sigma p_{T}
OBJ: TNamed deltaPt_Err.class TPC Delta Err Pt
OBJ: TNamed deltaPtchi2.AxisTitle p_{T}(Gev/c)
OBJ: TNamed deltaPtchi2.Description TPC standard QA variables. Class TPC Delta Chi2 Pt
OBJ: TNamed deltaPtchi2.Legend p_{T}
OBJ: TNamed deltaPtchi2.Title #Delta #chi2 p_{T}
OBJ: TNamed deltaPtchi2.class TPC Delta Chi2 Pt
OBJ: TNamed deltaPtchi2A.AxisTitle p_{T}(Gev/c)
OBJ: TNamed deltaPtchi2A.Description TPC standard QA variables. Class TPC Delta Chi2 Pt ASide
OBJ: TNamed deltaPtchi2A.Legend p_{T} A side
OBJ: TNamed deltaPtchi2A.Title #Delta #chi2 p_{T} A side
OBJ: TNamed deltaPtchi2A.class TPC Delta Chi2 Pt ASide
OBJ: TNamed deltaPtchi2C.AxisTitle p_{T}(Gev/c)
OBJ: TNamed deltaPtchi2C.Description TPC standard QA variables. Class TPC Delta Chi2 Pt CSide
OBJ: TNamed deltaPtchi2C.Legend p_{T} C side
OBJ: TNamed deltaPtchi2C.Title #Delta #chi2 p_{T} C side
OBJ: TNamed deltaPtchi2C.class TPC Delta Chi2 Pt CSide
OBJ: TNamed duration.AxisTitle
OBJ: TNamed duration.Description TPC standard QA variables. Class TPC
OBJ: TNamed duration.Legend
OBJ: TNamed duration.Title
OBJ: TNamed duration.class TPC
OBJ: TNamed electroMIPSeparation.AxisTitle dEdx(MIP/50)
OBJ: TNamed electroMIPSeparation.Description TPC standard QA variables. Class TPC dEdx
OBJ: TNamed electroMIPSeparation.Legend dEdx
OBJ: TNamed electroMIPSeparation.Title dEdx
OBJ: TNamed electroMIPSeparation.class TPC dEdx
OBJ: TNamed entriesMult.AxisTitle
OBJ: TNamed entriesMult.Description TPC standard QA variables. Class TPC
OBJ: TNamed entriesMult.Legend
OBJ: TNamed entriesMult.Title
OBJ: TNamed entriesMult.class TPC
OBJ: TNamed entriesVertX.AxisTitle x(cm)
OBJ: TNamed entriesVertX.Description TPC standard QA variables. Class TPC X
OBJ: TNamed entriesVertX.Legend x
OBJ: TNamed entriesVertX.Title x
OBJ: TNamed entriesVertX.class TPC X
OBJ: TNamed entriesVertY.AxisTitle y(cm)
OBJ: TNamed entriesVertY.Description TPC standard QA variables. Class TPC Y
OBJ: TNamed entriesVertY.Legend y
OBJ: TNamed entriesVertY.Title y
OBJ: TNamed entriesVertY.class TPC Y
OBJ: TNamed entriesVertZ.AxisTitle z(cm)
OBJ: TNamed entriesVertZ.Description TPC standard QA variables. Class TPC Z
OBJ: TNamed entriesVertZ.Legend z
OBJ: TNamed entriesVertZ.Title z
OBJ: TNamed entriesVertZ.class TPC Z
OBJ: TNamed errorMultNeg.AxisTitle
OBJ: TNamed errorMultNeg.Description TPC standard QA variables. Class TPC Err Neg
OBJ: TNamed errorMultNeg.Legend Q<0
OBJ: TNamed errorMultNeg.Title #sigma Q<0
OBJ: TNamed errorMultNeg.class TPC Err Neg
OBJ: TNamed errorMultPos.AxisTitle
OBJ: TNamed errorMultPos.Description TPC standard QA variables. Class TPC Err Pos
OBJ: TNamed errorMultPos.Legend Q>0
OBJ: TNamed errorMultPos.Title #sigma Q>0
OBJ: TNamed errorMultPos.class TPC Err Pos
OBJ: TNamed fitElectron..AxisTitle Electron
OBJ: TNamed fitElectron..Description TPC standard QA variables. Class TPC FitInfo[] Electron Class:TVectorT<float>
OBJ: TNamed fitElectron..Legend e-
OBJ: TNamed fitElectron..Title fit[] e-
OBJ: TNamed fitElectron..class TPC FitInfo[] Electron Class:TVectorT<float>
OBJ: TNamed fitMIP..AxisTitle dEdx(MIP/50)
OBJ: TNamed fitMIP..Description TPC standard QA variables. Class TPC FitInfo[] dEdx Class:TVectorT<float>
OBJ: TNamed fitMIP..Legend dEdx
OBJ: TNamed fitMIP..Title fit[] dEdx
OBJ: TNamed fitMIP..class TPC FitInfo[] dEdx Class:TVectorT<float>
OBJ: TNamed grNclPhiMedian..AxisTitle #phi Ncl(#)
OBJ: TNamed grNclPhiMedian..Description TPC standard QA variables. Class TPC Phi Ncl Class:TVectorT<double>
OBJ: TNamed grNclPhiMedian..Legend #phi Ncl
OBJ: TNamed grNclPhiMedian..Title #phi Ncl
OBJ: TNamed grNclPhiMedian..class TPC Phi Ncl Class:TVectorT<double>
OBJ: TNamed grNclPhiNegA..AxisTitle #phi Ncl(#)
OBJ: TNamed grNclPhiNegA..Description TPC standard QA variables. Class TPC Phi Ncl ASide Class:TGraphErrors
OBJ: TNamed grNclPhiNegA..Legend #phi Ncl A side
OBJ: TNamed grNclPhiNegA..Title #phi Ncl A side
OBJ: TNamed grNclPhiNegA..class TPC Phi Ncl ASide Class:TGraphErrors
OBJ: TNamed grNclPhiNegC..AxisTitle #phi Ncl(#)
OBJ: TNamed grNclPhiNegC..Description TPC standard QA variables. Class TPC Phi Ncl CSide Class:TGraphErrors
OBJ: TNamed grNclPhiNegC..Legend #phi Ncl C side
OBJ: TNamed grNclPhiNegC..Title #phi Ncl C side
OBJ: TNamed grNclPhiNegC..class TPC Phi Ncl CSide Class:TGraphErrors
OBJ: TNamed grNclPhiPosA..AxisTitle #phi Ncl(#)
OBJ: TNamed grNclPhiPosA..Description TPC standard QA variables. Class TPC Phi Ncl ASide Class:TGraphErrors
OBJ: TNamed grNclPhiPosA..Legend #phi Ncl A side
OBJ: TNamed grNclPhiPosA..Title #phi Ncl A side
OBJ: TNamed grNclPhiPosA..class TPC Phi Ncl ASide Class:TGraphErrors
OBJ: TNamed grNclPhiPosC..AxisTitle #phi Ncl(#)
OBJ: TNamed grNclPhiPosC..Description TPC standard QA variables. Class TPC Phi Ncl CSide Class:TGraphErrors
OBJ: TNamed grNclPhiPosC..Legend #phi Ncl C side
OBJ: TNamed grNclPhiPosC..Title #phi Ncl C side
OBJ: TNamed grNclPhiPosC..class TPC Phi Ncl CSide Class:TGraphErrors
OBJ: TNamed grNclSectorNegA..AxisTitle Ncl(#)
OBJ: TNamed grNclSectorNegA..Description TPC standard QA variables. Class TPC Ncl ASide Sector Class:TGraphErrors
OBJ: TNamed grNclSectorNegA..Legend Ncl A side Sector
OBJ: TNamed grNclSectorNegA..Title Ncl A side Sector
OBJ: TNamed grNclSectorNegA..class TPC Ncl ASide Sector Class:TGraphErrors
OBJ: TNamed grNclSectorNegC..AxisTitle Ncl(#)
OBJ: TNamed grNclSectorNegC..Description TPC standard QA variables. Class TPC Ncl CSide Sector Class:TGraphErrors
OBJ: TNamed grNclSectorNegC..Legend Ncl C side Sector
OBJ: TNamed grNclSectorNegC..Title Ncl C side Sector
OBJ: TNamed grNclSectorNegC..class TPC Ncl CSide Sector Class:TGraphErrors
OBJ: TNamed grNclSectorPosA..AxisTitle Ncl(#)
OBJ: TNamed grNclSectorPosA..Description TPC standard QA variables. Class TPC Ncl ASide Sector Class:TGraphErrors
OBJ: TNamed grNclSectorPosA..Legend Ncl A side Sector
OBJ: TNamed grNclSectorPosA..Title Ncl A side Sector
OBJ: TNamed grNclSectorPosA..class TPC Ncl ASide Sector Class:TGraphErrors
OBJ: TNamed grNclSectorPosC..AxisTitle Ncl(#)
OBJ: TNamed grNclSectorPosC..Description TPC standard QA variables. Class TPC Ncl CSide Sector Class:TGraphErrors
OBJ: TNamed grNclSectorPosC..Legend Ncl C side Sector
OBJ: TNamed grNclSectorPosC..Title Ncl C side Sector
OBJ: TNamed grNclSectorPosC..class TPC Ncl CSide Sector Class:TGraphErrors
OBJ: TNamed grNtrPhiNegA..AxisTitle #phi
OBJ: TNamed grNtrPhiNegA..Description TPC standard QA variables. Class TPC Phi ASide Class:TGraphErrors
OBJ: TNamed grNtrPhiNegA..Legend #phi A side
OBJ: TNamed grNtrPhiNegA..Title #phi A side
OBJ: TNamed grNtrPhiNegA..class TPC Phi ASide Class:TGraphErrors
OBJ: TNamed grNtrPhiNegC..AxisTitle #phi
OBJ: TNamed grNtrPhiNegC..Description TPC standard QA variables. Class TPC Phi CSide Class:TGraphErrors
OBJ: TNamed grNtrPhiNegC..Legend #phi C side
OBJ: TNamed grNtrPhiNegC..Title #phi C side
OBJ: TNamed grNtrPhiNegC..class TPC Phi CSide Class:TGraphErrors
OBJ: TNamed grNtrPhiPosA..AxisTitle #phi
OBJ: TNamed grNtrPhiPosA..Description TPC standard QA variables. Class TPC Phi ASide Class:TGraphErrors
OBJ: TNamed grNtrPhiPosA..Legend #phi A side
OBJ: TNamed grNtrPhiPosA..Title #phi A side
OBJ: TNamed grNtrPhiPosA..class TPC Phi ASide Class:TGraphErrors
OBJ: TNamed grNtrPhiPosC..AxisTitle #phi
OBJ: TNamed grNtrPhiPosC..Description TPC standard QA variables. Class TPC Phi CSide Class:TGraphErrors
OBJ: TNamed grNtrPhiPosC..Legend #phi C side
OBJ: TNamed grNtrPhiPosC..Title #phi C side
OBJ: TNamed grNtrPhiPosC..class TPC Phi CSide Class:TGraphErrors
OBJ: TNamed grNtrSectorNegA..AxisTitle
OBJ: TNamed grNtrSectorNegA..Description TPC standard QA variables. Class TPC ASide Sector Class:TGraphErrors
OBJ: TNamed grNtrSectorNegA..Legend A side Sector
OBJ: TNamed grNtrSectorNegA..Title A side Sector
OBJ: TNamed grNtrSectorNegA..class TPC ASide Sector Class:TGraphErrors
OBJ: TNamed grNtrSectorNegC..AxisTitle
OBJ: TNamed grNtrSectorNegC..Description TPC standard QA variables. Class TPC CSide Sector Class:TGraphErrors
OBJ: TNamed grNtrSectorNegC..Legend C side Sector
OBJ: TNamed grNtrSectorNegC..Title C side Sector
OBJ: TNamed grNtrSectorNegC..class TPC CSide Sector Class:TGraphErrors
OBJ: TNamed grNtrSectorPosA..AxisTitle
OBJ: TNamed grNtrSectorPosA..Description TPC standard QA variables. Class TPC ASide Sector Class:TGraphErrors
OBJ: TNamed grNtrSectorPosA..Legend A side Sector
OBJ: TNamed grNtrSectorPosA..Title A side Sector
OBJ: TNamed grNtrSectorPosA..class TPC ASide Sector Class:TGraphErrors
OBJ: TNamed grNtrSectorPosC..AxisTitle
OBJ: TNamed grNtrSectorPosC..Description TPC standard QA variables. Class TPC CSide Sector Class:TGraphErrors
OBJ: TNamed grNtrSectorPosC..Legend C side Sector
OBJ: TNamed grNtrSectorPosC..Title C side Sector
OBJ: TNamed grNtrSectorPosC..class TPC CSide Sector Class:TGraphErrors
OBJ: TNamed grOCDBStatus..AxisTitle
OBJ: TNamed grOCDBStatus..Description TPC standard QA variables. Class TPC Class:TGraphErrors
OBJ: TNamed grOCDBStatus..Legend
OBJ: TNamed grOCDBStatus..Title
OBJ: TNamed grOCDBStatus..class TPC Class:TGraphErrors
OBJ: TNamed grROCHVMedian..AxisTitle
OBJ: TNamed grROCHVMedian..Description TPC standard QA variables. Class TPC Class:TGraphErrors
OBJ: TNamed grROCHVMedian..Legend
OBJ: TNamed grROCHVMedian..Title
OBJ: TNamed grROCHVMedian..class TPC Class:TGraphErrors
OBJ: TNamed grROCHVNominal..AxisTitle
OBJ: TNamed grROCHVNominal..Description TPC standard QA variables. Class TPC Class:TGraphErrors
OBJ: TNamed grROCHVNominal..Legend
OBJ: TNamed grROCHVNominal..Title
OBJ: TNamed grROCHVNominal..class TPC Class:TGraphErrors
OBJ: TNamed grROCHVStatus..AxisTitle
OBJ: TNamed grROCHVStatus..Description TPC standard QA variables. Class TPC Class:TGraphErrors
OBJ: TNamed grROCHVStatus..Legend
OBJ: TNamed grROCHVStatus..Title
OBJ: TNamed grROCHVStatus..class TPC Class:TGraphErrors
OBJ: TNamed grROCHVTimeFraction..AxisTitle
OBJ: TNamed grROCHVTimeFraction..Description TPC standard QA variables. Class TPC Class:TGraphErrors
OBJ: TNamed grROCHVTimeFraction..Legend
OBJ: TNamed grROCHVTimeFraction..Title
OBJ: TNamed grROCHVTimeFraction..class TPC Class:TGraphErrors
OBJ: TNamed grRawAboveThr..AxisTitle
OBJ: TNamed grRawAboveThr..Description TPC standard QA variables. Class TPC Class:TGraphErrors
OBJ: TNamed grRawAboveThr..Legend
OBJ: TNamed grRawAboveThr..Title
OBJ: TNamed grRawAboveThr..class TPC Class:TGraphErrors
OBJ: TNamed grRawLocalMax..AxisTitle
OBJ: TNamed grRawLocalMax..Description TPC standard QA variables. Class TPC Class:TGraphErrors
OBJ: TNamed grRawLocalMax..Legend
OBJ: TNamed grRawLocalMax..Title
OBJ: TNamed grRawLocalMax..class TPC Class:TGraphErrors
OBJ: TNamed grRawQMax..AxisTitle
OBJ: TNamed grRawQMax..Description TPC standard QA variables. Class TPC Class:TGraphErrors
OBJ: TNamed grRawQMax..Legend
OBJ: TNamed grRawQMax..Title
OBJ: TNamed grRawQMax..class TPC Class:TGraphErrors
OBJ: TNamed grdcar_neg_ASidePhi..AxisTitle #phi DCA_{xy}(cm)
OBJ: TNamed grdcar_neg_ASidePhi..Description TPC standard QA variables. Class TPC Phi DCAr ASide Neg Class:TGraphErrors
OBJ: TNamed grdcar_neg_ASidePhi..Legend #phi DCA_{xy} A side Q<0
OBJ: TNamed grdcar_neg_ASidePhi..Title #phi DCA_{xy} A side Q<0
OBJ: TNamed grdcar_neg_ASidePhi..class TPC Phi DCAr ASide Neg Class:TGraphErrors
OBJ: TNamed grdcar_neg_CSidePhi..AxisTitle #phi DCA_{xy}(cm)
OBJ: TNamed grdcar_neg_CSidePhi..Description TPC standard QA variables. Class TPC Phi DCAr CSide Neg Class:TGraphErrors
OBJ: TNamed grdcar_neg_CSidePhi..Legend #phi DCA_{xy} C side Q<0
OBJ: TNamed grdcar_neg_CSidePhi..Title #phi DCA_{xy} C side Q<0
OBJ: TNamed grdcar_neg_CSidePhi..class TPC Phi DCAr CSide Neg Class:TGraphErrors
OBJ: TNamed grdcar_neg_Eta..AxisTitle DCA_{xy}(cm)
OBJ: TNamed grdcar_neg_Eta..Description TPC standard QA variables. Class TPC DCAr ASide Neg Class:TGraphErrors
OBJ: TNamed grdcar_neg_Eta..Legend DCA_{xy} A side Q<0
OBJ: TNamed grdcar_neg_Eta..Title DCA_{xy} A side Q<0
OBJ: TNamed grdcar_neg_Eta..class TPC DCAr ASide Neg Class:TGraphErrors
OBJ: TNamed grdcar_pos_ASidePhi..AxisTitle #phi DCA_{xy}(cm)
OBJ: TNamed grdcar_pos_ASidePhi..Description TPC standard QA variables. Class TPC Phi DCAr ASide Pos Class:TGraphErrors
OBJ: TNamed grdcar_pos_ASidePhi..Legend #phi DCA_{xy} A side Q>0
OBJ: TNamed grdcar_pos_ASidePhi..Title #phi DCA_{xy} A side Q>0
OBJ: TNamed grdcar_pos_ASidePhi..class TPC Phi DCAr ASide Pos Class:TGraphErrors
OBJ: TNamed grdcar_pos_CSidePhi..AxisTitle #phi DCA_{xy}(cm)
OBJ: TNamed grdcar_pos_CSidePhi..Description TPC standard QA variables. Class TPC Phi DCAr CSide Pos Class:TGraphErrors
OBJ: TNamed grdcar_pos_CSidePhi..Legend #phi DCA_{xy} C side Q>0
OBJ: TNamed grdcar_pos_CSidePhi..Title #phi DCA_{xy} C side Q>0
OBJ: TNamed grdcar_pos_CSidePhi..class TPC Phi DCAr CSide Pos Class:TGraphErrors
OBJ: TNamed grdcar_pos_Eta..AxisTitle DCA_{xy}(cm)
OBJ: TNamed grdcar_pos_Eta..Description TPC standard QA variables. Class TPC DCAr ASide Pos Class:TGraphErrors
OBJ: TNamed grdcar_pos_Eta..Legend DCA_{xy} A side Q>0
OBJ: TNamed grdcar_pos_Eta..Title DCA_{xy} A side Q>0
OBJ: TNamed grdcar_pos_Eta..class TPC DCAr ASide Pos Class:TGraphErrors
OBJ: TNamed grdcaz_neg_ASidePhi..AxisTitle #phi DCA_{z}(cm)
OBJ: TNamed grdcaz_neg_ASidePhi..Description TPC standard QA variables. Class TPC Phi DCAz ASide Neg Class:TGraphErrors
OBJ: TNamed grdcaz_neg_ASidePhi..Legend #phi DCA_{z} A side Q<0
OBJ: TNamed grdcaz_neg_ASidePhi..Title #phi DCA_{z} A side Q<0
OBJ: TNamed grdcaz_neg_ASidePhi..class TPC Phi DCAz ASide Neg Class:TGraphErrors
OBJ: TNamed grdcaz_neg_CSidePhi..AxisTitle #phi DCA_{z}(cm)
OBJ: TNamed grdcaz_neg_CSidePhi..Description TPC standard QA variables. Class TPC Phi DCAz CSide Neg Class:TGraphErrors
OBJ: TNamed grdcaz_neg_CSidePhi..Legend #phi DCA_{z} C side Q<0
OBJ: TNamed grdcaz_neg_CSidePhi..Title #phi DCA_{z} C side Q<0
OBJ: TNamed grdcaz_neg_CSidePhi..class TPC Phi DCAz CSide Neg Class:TGraphErrors
OBJ: TNamed grdcaz_neg_Eta..AxisTitle DCA_{z}(cm)
OBJ: TNamed grdcaz_neg_Eta..Description TPC standard QA variables. Class TPC DCAz ASide Neg Class:TGraphErrors
OBJ: TNamed grdcaz_neg_Eta..Legend DCA_{z} A side Q<0
OBJ: TNamed grdcaz_neg_Eta..Title DCA_{z} A side Q<0
OBJ: TNamed grdcaz_neg_Eta..class TPC DCAz ASide Neg Class:TGraphErrors
OBJ: TNamed grdcaz_pos_ASidePhi..AxisTitle #phi DCA_{z}(cm)
OBJ: TNamed grdcaz_pos_ASidePhi..Description TPC standard QA variables. Class TPC Phi DCAz ASide Pos Class:TGraphErrors
OBJ: TNamed grdcaz_pos_ASidePhi..Legend #phi DCA_{z} A side Q>0
OBJ: TNamed grdcaz_pos_ASidePhi..Title #phi DCA_{z} A side Q>0
OBJ: TNamed grdcaz_pos_ASidePhi..class TPC Phi DCAz ASide Pos Class:TGraphErrors
OBJ: TNamed grdcaz_pos_CSidePhi..AxisTitle #phi DCA_{z}(cm)
OBJ: TNamed grdcaz_pos_CSidePhi..Description TPC standard QA variables. Class TPC Phi DCAz CSide Pos Class:TGraphErrors
OBJ: TNamed grdcaz_pos_CSidePhi..Legend #phi DCA_{z} C side Q>0
OBJ: TNamed grdcaz_pos_CSidePhi..Title #phi DCA_{z} C side Q>0
OBJ: TNamed grdcaz_pos_CSidePhi..class TPC Phi DCAz CSide Pos Class:TGraphErrors
OBJ: TNamed grdcaz_pos_Eta..AxisTitle DCA_{z}(cm)
OBJ: TNamed grdcaz_pos_Eta..Description TPC standard QA variables. Class TPC DCAz ASide Pos Class:TGraphErrors
OBJ: TNamed grdcaz_pos_Eta..Legend DCA_{z} A side Q>0
OBJ: TNamed grdcaz_pos_Eta..Title DCA_{z} A side Q>0
OBJ: TNamed grdcaz_pos_Eta..class TPC DCAz ASide Pos Class:TGraphErrors
OBJ: TNamed hasRawQA.AxisTitle
OBJ: TNamed hasRawQA.Description TPC standard QA variables. Class TPC ASide
OBJ: TNamed hasRawQA.Legend A side
OBJ: TNamed hasRawQA.Title A side
OBJ: TNamed hasRawQA.class TPC ASide
OBJ: TNamed highPtANeg.AxisTitle
OBJ: TNamed highPtANeg.Description TPC standard QA variables. Class TPC Neg HighPt
OBJ: TNamed highPtANeg.Legend Q<0 high p_{T}
OBJ: TNamed highPtANeg.Title Q<0 high p_{T}
OBJ: TNamed highPtANeg.class TPC Neg HighPt
OBJ: TNamed highPtAPos.AxisTitle
OBJ: TNamed highPtAPos.Description TPC standard QA variables. Class TPC Pos HighPt
OBJ: TNamed highPtAPos.Legend Q>0 high p_{T}
OBJ: TNamed highPtAPos.Title Q>0 high p_{T}
OBJ: TNamed highPtAPos.class TPC Pos HighPt
OBJ: TNamed highPtCNeg.AxisTitle
OBJ: TNamed highPtCNeg.Description TPC standard QA variables. Class TPC Neg HighPt
OBJ: TNamed highPtCNeg.Legend Q<0 high p_{T}
OBJ: TNamed highPtCNeg.Title Q<0 high p_{T}
OBJ: TNamed highPtCNeg.class TPC Neg HighPt
OBJ: TNamed highPtCPos.AxisTitle
OBJ: TNamed highPtCPos.Description TPC standard QA variables. Class TPC Pos HighPt
OBJ: TNamed highPtCPos.Legend Q>0 high p_{T}
OBJ: TNamed highPtCPos.Title Q>0 high p_{T}
OBJ: TNamed highPtCPos.class TPC Pos HighPt
OBJ: TNamed htmlLink.html https://alice-logbook.cern.ch/logbook/date_online.php?p_cont=rund&p_run=%d<run>
OBJ: TNamed infoMult..AxisTitle
OBJ: TNamed infoMult..Description TPC standard QA variables. Class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoMult..Legend
OBJ: TNamed infoMult..Title stat[]
OBJ: TNamed infoMult..class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoMultNeg..AxisTitle
OBJ: TNamed infoMultNeg..Description TPC standard QA variables. Class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoMultNeg..Legend
OBJ: TNamed infoMultNeg..Title stat[]
OBJ: TNamed infoMultNeg..class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoMultPos..AxisTitle
OBJ: TNamed infoMultPos..Description TPC standard QA variables. Class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoMultPos..Legend
OBJ: TNamed infoMultPos..Title stat[]
OBJ: TNamed infoMultPos..class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoTPCchi2..AxisTitle
OBJ: TNamed infoTPCchi2..Description TPC standard QA variables. Class TPC Chi2 StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoTPCchi2..Legend
OBJ: TNamed infoTPCchi2..Title #chi2stat[]
OBJ: TNamed infoTPCchi2..class TPC Chi2 StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoTPCncl..AxisTitle Ncl(#)
OBJ: TNamed infoTPCncl..Description TPC standard QA variables. Class TPC StatInfo[] Ncl Class:TVectorT<float>
OBJ: TNamed infoTPCncl..Legend Ncl
OBJ: TNamed infoTPCncl..Title stat[] Ncl
OBJ: TNamed infoTPCncl..class TPC StatInfo[] Ncl Class:TVectorT<float>
OBJ: TNamed infoTPCnclF..AxisTitle Ncl(#)
OBJ: TNamed infoTPCnclF..Description TPC standard QA variables. Class TPC StatInfo[] Ncl Class:TVectorT<float>
OBJ: TNamed infoTPCnclF..Legend Ncl
OBJ: TNamed infoTPCnclF..Title stat[] Ncl
OBJ: TNamed infoTPCnclF..class TPC StatInfo[] Ncl Class:TVectorT<float>
OBJ: TNamed infoVertX..AxisTitle
OBJ: TNamed infoVertX..Description TPC standard QA variables. Class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoVertX..Legend
OBJ: TNamed infoVertX..Title stat[]
OBJ: TNamed infoVertX..class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoVertY..AxisTitle
OBJ: TNamed infoVertY..Description TPC standard QA variables. Class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoVertY..Legend
OBJ: TNamed infoVertY..Title stat[]
OBJ: TNamed infoVertY..class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoVertZ..AxisTitle
OBJ: TNamed infoVertZ..Description TPC standard QA variables. Class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infoVertZ..Legend
OBJ: TNamed infoVertZ..Title stat[]
OBJ: TNamed infoVertZ..class TPC StatInfo[] Class:TVectorT<float>
OBJ: TNamed infolambdaPull..AxisTitle #Theta
OBJ: TNamed infolambdaPull..Description TPC standard QA variables. Class TPC Pull StatInfo[] Theta Class:TVectorT<float>
OBJ: TNamed infolambdaPull..Legend #Theta
OBJ: TNamed infolambdaPull..Title pullstat[] #Theta
OBJ: TNamed infolambdaPull..class TPC Pull StatInfo[] Theta Class:TVectorT<float>
OBJ: TNamed infolambdaPullHighPt..AxisTitle #Theta
OBJ: TNamed infolambdaPullHighPt..Description TPC standard QA variables. Class TPC Pull StatInfo[] Theta HighPt Class:TVectorT<float>
OBJ: TNamed infolambdaPullHighPt..Legend #Theta high p_{T}
OBJ: TNamed infolambdaPullHighPt..Title pullstat[] #Theta high p_{T}
OBJ: TNamed infolambdaPullHighPt..class TPC Pull StatInfo[] Theta HighPt Class:TVectorT<float>
OBJ: TNamed infophiPull..AxisTitle #phi
OBJ: TNamed infophiPull..Description TPC standard QA variables. Class TPC Pull StatInfo[] Phi Class:TVectorT<float>
OBJ: TNamed infophiPull..Legend #phi
OBJ: TNamed infophiPull..Title pullstat[] #phi
OBJ: TNamed infophiPull..class TPC Pull StatInfo[] Phi Class:TVectorT<float>
OBJ: TNamed infophiPullHighPt..AxisTitle #phi
OBJ: TNamed infophiPullHighPt..Description TPC standard QA variables. Class TPC Pull StatInfo[] Phi HighPt Class:TVectorT<float>
OBJ: TNamed infophiPullHighPt..Legend #phi high p_{T}
OBJ: TNamed infophiPullHighPt..Title pullstat[] #phi high p_{T}
OBJ: TNamed infophiPullHighPt..class TPC Pull StatInfo[] Phi HighPt Class:TVectorT<float>
OBJ: TNamed infoptPull..AxisTitle p_{T}(Gev/c)
OBJ: TNamed infoptPull..Description TPC standard QA variables. Class TPC Pull StatInfo[] Pt Class:TVectorT<float>
OBJ: TNamed infoptPull..Legend p_{T}
OBJ: TNamed infoptPull..Title pullstat[] p_{T}
OBJ: TNamed infoptPull..class TPC Pull StatInfo[] Pt Class:TVectorT<float>
OBJ: TNamed infoptPullHighPt..AxisTitle p_{T}(Gev/c)
OBJ: TNamed infoptPullHighPt..Description TPC standard QA variables. Class TPC Pull StatInfo[] Pt HighPt Class:TVectorT<float>
OBJ: TNamed infoptPullHighPt..Legend p_{T} high p_{T}
OBJ: TNamed infoptPullHighPt..Title pullstat[] p_{T} high p_{T}
OBJ: TNamed infoptPullHighPt..class TPC Pull StatInfo[] Pt HighPt Class:TVectorT<float>
OBJ: TNamed infotpcConstrainPhiA..AxisTitle #phi
OBJ: TNamed infotpcConstrainPhiA..Description TPC standard QA variables. Class TPC Constrain StatInfo[] Phi ASide Class:TVectorT<float>
OBJ: TNamed infotpcConstrainPhiA..Legend #phi A side
OBJ: TNamed infotpcConstrainPhiA..Title Constrainstat[] #phi A side
OBJ: TNamed infotpcConstrainPhiA..class TPC Constrain StatInfo[] Phi ASide Class:TVectorT<float>
OBJ: TNamed infotpcConstrainPhiC..AxisTitle #phi
OBJ: TNamed infotpcConstrainPhiC..Description TPC standard QA variables. Class TPC Constrain StatInfo[] Phi CSide Class:TVectorT<float>
OBJ: TNamed infotpcConstrainPhiC..Legend #phi C side
OBJ: TNamed infotpcConstrainPhiC..Title Constrainstat[] #phi C side
OBJ: TNamed infotpcConstrainPhiC..class TPC Constrain StatInfo[] Phi CSide Class:TVectorT<float>
OBJ: TNamed infoyPull..AxisTitle y(cm)
OBJ: TNamed infoyPull..Description TPC standard QA variables. Class TPC Pull StatInfo[] Y Class:TVectorT<float>
OBJ: TNamed infoyPull..Legend y
OBJ: TNamed infoyPull..Title pullstat[] y
OBJ: TNamed infoyPull..class TPC Pull StatInfo[] Y Class:TVectorT<float>
OBJ: TNamed infoyPullHighPt..AxisTitle y(cm)
OBJ: TNamed infoyPullHighPt..Description TPC standard QA variables. Class TPC Pull StatInfo[] Y HighPt Class:TVectorT<float>
OBJ: TNamed infoyPullHighPt..Legend y high p_{T}
OBJ: TNamed infoyPullHighPt..Title pullstat[] y high p_{T}
OBJ: TNamed infoyPullHighPt..class TPC Pull StatInfo[] Y HighPt Class:TVectorT<float>
OBJ: TNamed infozPull..AxisTitle z(cm)
OBJ: TNamed infozPull..Description TPC standard QA variables. Class TPC Pull StatInfo[] Z Class:TVectorT<float>
OBJ: TNamed infozPull..Legend z
OBJ: TNamed infozPull..Title pullstat[] z
OBJ: TNamed infozPull..class TPC Pull StatInfo[] Z Class:TVectorT<float>
OBJ: TNamed infozPullHighPt..AxisTitle z(cm)
OBJ: TNamed infozPullHighPt..Description TPC standard QA variables. Class TPC Pull StatInfo[] Z HighPt Class:TVectorT<float>
OBJ: TNamed infozPullHighPt..Legend z high p_{T}
OBJ: TNamed infozPullHighPt..Title pullstat[] z high p_{T}
OBJ: TNamed infozPullHighPt..class TPC Pull StatInfo[] Z HighPt Class:TVectorT<float>
OBJ: TNamed iroc_A_side.AxisTitle
OBJ: TNamed iroc_A_side.Description TPC standard QA variables. Class TPC ASide IROC
OBJ: TNamed iroc_A_side.Legend A side IROC
OBJ: TNamed iroc_A_side.Title A side IROC
OBJ: TNamed iroc_A_side.class TPC ASide IROC
OBJ: TNamed iroc_C_side.AxisTitle
OBJ: TNamed iroc_C_side.Description TPC standard QA variables. Class TPC CSide IROC
OBJ: TNamed iroc_C_side.Legend C side IROC
OBJ: TNamed iroc_C_side.Title C side IROC
OBJ: TNamed iroc_C_side.class TPC CSide IROC
OBJ: TNamed lambdaPull.AxisTitle #Theta
OBJ: TNamed lambdaPull.Description TPC standard QA variables. Class TPC Pull Theta
OBJ: TNamed lambdaPull.Legend #Theta
OBJ: TNamed lambdaPull.Title pull #Theta
OBJ: TNamed lambdaPull.class TPC Pull Theta
OBJ: TNamed lambdaPullHighPt.AxisTitle #Theta
OBJ: TNamed lambdaPullHighPt.Description TPC standard QA variables. Class TPC Pull Theta HighPt
OBJ: TNamed lambdaPullHighPt.Legend #Theta high p_{T}
OBJ: TNamed lambdaPullHighPt.Title pull #Theta high p_{T}
OBJ: TNamed lambdaPullHighPt.class TPC Pull Theta HighPt
OBJ: TNamed meanMIP.AxisTitle dEdx(MIP/50)
OBJ: TNamed meanMIP.Description TPC standard QA variables. Class TPC Mean dEdx
OBJ: TNamed meanMIP.Legend dEdx
OBJ: TNamed meanMIP.Title mean dEdx
OBJ: TNamed meanMIP.class TPC Mean dEdx
OBJ: TNamed meanMIPele.AxisTitle dEdx(MIP/50) Electron
OBJ: TNamed meanMIPele.Description TPC standard QA variables. Class TPC Mean dEdx Electron
OBJ: TNamed meanMIPele.Legend dEdx e-
OBJ: TNamed meanMIPele.Title mean dEdx e-
OBJ: TNamed meanMIPele.class TPC Mean dEdx Electron
OBJ: TNamed meanMIPvsSector..AxisTitle dEdx(MIP/50)
OBJ: TNamed meanMIPvsSector..Description TPC standard QA variables. Class TPC Mean dEdx Sector Class:TVectorT<double>
OBJ: TNamed meanMIPvsSector..Legend dEdx Sector
OBJ: TNamed meanMIPvsSector..Title mean dEdx Sector
OBJ: TNamed meanMIPvsSector..class TPC Mean dEdx Sector Class:TVectorT<double>
OBJ: TNamed meanMult.AxisTitle
OBJ: TNamed meanMult.Description TPC standard QA variables. Class TPC Mean
OBJ: TNamed meanMult.Legend
OBJ: TNamed meanMult.Title mean
OBJ: TNamed meanMult.class TPC Mean
OBJ: TNamed meanMultNeg.AxisTitle
OBJ: TNamed meanMultNeg.Description TPC standard QA variables. Class TPC Mean Neg
OBJ: TNamed meanMultNeg.Legend Q<0
OBJ: TNamed meanMultNeg.Title mean Q<0
OBJ: TNamed meanMultNeg.class TPC Mean Neg
OBJ: TNamed meanMultPos.AxisTitle
OBJ: TNamed meanMultPos.Description TPC standard QA variables. Class TPC Mean Pos
OBJ: TNamed meanMultPos.Legend Q>0
OBJ: TNamed meanMultPos.Title mean Q>0
OBJ: TNamed meanMultPos.class TPC Mean Pos
OBJ: TNamed meanPtANeg.AxisTitle p_{T}(Gev/c)
OBJ: TNamed meanPtANeg.Description TPC standard QA variables. Class TPC Mean Pt Neg
OBJ: TNamed meanPtANeg.Legend p_{T} Q<0
OBJ: TNamed meanPtANeg.Title mean p_{T} Q<0
OBJ: TNamed meanPtANeg.class TPC Mean Pt Neg
OBJ: TNamed meanPtAPos.AxisTitle p_{T}(Gev/c)
OBJ: TNamed meanPtAPos.Description TPC standard QA variables. Class TPC Mean Pt Pos
OBJ: TNamed meanPtAPos.Legend p_{T} Q>0
OBJ: TNamed meanPtAPos.Title mean p_{T} Q>0
OBJ: TNamed meanPtAPos.class TPC Mean Pt Pos
OBJ: TNamed meanPtCNeg.AxisTitle p_{T}(Gev/c)
OBJ: TNamed meanPtCNeg.Description TPC standard QA variables. Class TPC Mean Pt Neg
OBJ: TNamed meanPtCNeg.Legend p_{T} Q<0
OBJ: TNamed meanPtCNeg.Title mean p_{T} Q<0
OBJ: TNamed meanPtCNeg.class TPC Mean Pt Neg
OBJ: TNamed meanPtCPos.AxisTitle p_{T}(Gev/c)
OBJ: TNamed meanPtCPos.Description TPC standard QA variables. Class TPC Mean Pt Pos
OBJ: TNamed meanPtCPos.Legend p_{T} Q>0
OBJ: TNamed meanPtCPos.Title mean p_{T} Q>0
OBJ: TNamed meanPtCPos.class TPC Mean Pt Pos
OBJ: TNamed meanTPCChi2.AxisTitle
OBJ: TNamed meanTPCChi2.Description TPC standard QA variables. Class TPC Mean Chi2
OBJ: TNamed meanTPCChi2.Legend
OBJ: TNamed meanTPCChi2.Title mean #chi2
OBJ: TNamed meanTPCChi2.class TPC Mean Chi2
OBJ: TNamed meanTPCncl.AxisTitle Ncl(#)
OBJ: TNamed meanTPCncl.Description TPC standard QA variables. Class TPC Mean Ncl
OBJ: TNamed meanTPCncl.Legend Ncl
OBJ: TNamed meanTPCncl.Title mean Ncl
OBJ: TNamed meanTPCncl.class TPC Mean Ncl
OBJ: TNamed meanTPCnclF.AxisTitle Ncl(#)
OBJ: TNamed meanTPCnclF.Description TPC standard QA variables. Class TPC Mean Ncl
OBJ: TNamed meanTPCnclF.Legend Ncl
OBJ: TNamed meanTPCnclF.Title mean Ncl
OBJ: TNamed meanTPCnclF.class TPC Mean Ncl
OBJ: TNamed meanVertX.AxisTitle x(cm)
OBJ: TNamed meanVertX.Description TPC standard QA variables. Class TPC Mean X
OBJ: TNamed meanVertX.Legend x
OBJ: TNamed meanVertX.Title mean x
OBJ: TNamed meanVertX.class TPC Mean X
OBJ: TNamed meanVertY.AxisTitle y(cm)
OBJ: TNamed meanVertY.Description TPC standard QA variables. Class TPC Mean Y
OBJ: TNamed meanVertY.Legend y
OBJ: TNamed meanVertY.Title mean y
OBJ: TNamed meanVertY.class TPC Mean Y
OBJ: TNamed meanVertZ.AxisTitle z(cm)
OBJ: TNamed meanVertZ.Description TPC standard QA variables. Class TPC Mean Z
OBJ: TNamed meanVertZ.Legend z
OBJ: TNamed meanVertZ.Title mean z
OBJ: TNamed meanVertZ.class TPC Mean Z
OBJ: TNamed mediumPtANeg.AxisTitle
OBJ: TNamed mediumPtANeg.Description TPC standard QA variables. Class TPC Neg
OBJ: TNamed mediumPtANeg.Legend Q<0
OBJ: TNamed mediumPtANeg.Title Q<0
OBJ: TNamed mediumPtANeg.class TPC Neg
OBJ: TNamed mediumPtAPos.AxisTitle
OBJ: TNamed mediumPtAPos.Description TPC standard QA variables. Class TPC Pos
OBJ: TNamed mediumPtAPos.Legend Q>0
OBJ: TNamed mediumPtAPos.Title Q>0
OBJ: TNamed mediumPtAPos.class TPC Pos
OBJ: TNamed mediumPtCNeg.AxisTitle
OBJ: TNamed mediumPtCNeg.Description TPC standard QA variables. Class TPC Neg
OBJ: TNamed mediumPtCNeg.Legend Q<0
OBJ: TNamed mediumPtCNeg.Title Q<0
OBJ: TNamed mediumPtCNeg.class TPC Neg
OBJ: TNamed mediumPtCPos.AxisTitle
OBJ: TNamed mediumPtCPos.Description TPC standard QA variables. Class TPC Pos
OBJ: TNamed mediumPtCPos.Legend Q>0
OBJ: TNamed mediumPtCPos.Title Q>0
OBJ: TNamed mediumPtCPos.class TPC Pos
OBJ: TNamed offsetdRA.AxisTitle
OBJ: TNamed offsetdRA.Description TPC standard QA variables. Class TPC ASide
OBJ: TNamed offsetdRA.Legend A side
OBJ: TNamed offsetdRA.Title A side
OBJ: TNamed offsetdRA.class TPC ASide
OBJ: TNamed offsetdRAErr.AxisTitle
OBJ: TNamed offsetdRAErr.Description TPC standard QA variables. Class TPC Err
OBJ: TNamed offsetdRAErr.Legend
OBJ: TNamed offsetdRAErr.Title #sigma
OBJ: TNamed offsetdRAErr.class TPC Err
OBJ: TNamed offsetdRAErrNeg.AxisTitle
OBJ: TNamed offsetdRAErrNeg.Description TPC standard QA variables. Class TPC Err Neg
OBJ: TNamed offsetdRAErrNeg.Legend Q<0
OBJ: TNamed offsetdRAErrNeg.Title #sigma Q<0
OBJ: TNamed offsetdRAErrNeg.class TPC Err Neg
OBJ: TNamed offsetdRAErrPos.AxisTitle
OBJ: TNamed offsetdRAErrPos.Description TPC standard QA variables. Class TPC Err Pos
OBJ: TNamed offsetdRAErrPos.Legend Q>0
OBJ: TNamed offsetdRAErrPos.Title #sigma Q>0
OBJ: TNamed offsetdRAErrPos.class TPC Err Pos
OBJ: TNamed offsetdRANeg.AxisTitle
OBJ: TNamed offsetdRANeg.Description TPC standard QA variables. Class TPC Neg
OBJ: TNamed offsetdRANeg.Legend Q<0
OBJ: TNamed offsetdRANeg.Title Q<0
OBJ: TNamed offsetdRANeg.class TPC Neg
OBJ: TNamed offsetdRAPos.AxisTitle
OBJ: TNamed offsetdRAPos.Description TPC standard QA variables. Class TPC Pos
OBJ: TNamed offsetdRAPos.Legend Q>0
OBJ: TNamed offsetdRAPos.Title Q>0
OBJ: TNamed offsetdRAPos.class TPC Pos
OBJ: TNamed offsetdRAchi2.AxisTitle
OBJ: TNamed offsetdRAchi2.Description TPC standard QA variables. Class TPC Chi2
OBJ: TNamed offsetdRAchi2.Legend
OBJ: TNamed offsetdRAchi2.Title #chi2
OBJ: TNamed offsetdRAchi2.class TPC Chi2
OBJ: TNamed offsetdRAchi2Neg.AxisTitle
OBJ: TNamed offsetdRAchi2Neg.Description TPC standard QA variables. Class TPC Chi2 Neg
OBJ: TNamed offsetdRAchi2Neg.Legend Q<0
OBJ: TNamed offsetdRAchi2Neg.Title #chi2 Q<0
OBJ: TNamed offsetdRAchi2Neg.class TPC Chi2 Neg
OBJ: TNamed offsetdRAchi2Pos.AxisTitle
OBJ: TNamed offsetdRAchi2Pos.Description TPC standard QA variables. Class TPC Chi2 Pos
OBJ: TNamed offsetdRAchi2Pos.Legend Q>0
OBJ: TNamed offsetdRAchi2Pos.Title #chi2 Q>0
OBJ: TNamed offsetdRAchi2Pos.class TPC Chi2 Pos
OBJ: TNamed offsetdRC.AxisTitle
OBJ: TNamed offsetdRC.Description TPC standard QA variables. Class TPC CSide
OBJ: TNamed offsetdRC.Legend C side
OBJ: TNamed offsetdRC.Title C side
OBJ: TNamed offsetdRC.class TPC CSide
OBJ: TNamed offsetdRCErr.AxisTitle
OBJ: TNamed offsetdRCErr.Description TPC standard QA variables. Class TPC Err
OBJ: TNamed offsetdRCErr.Legend
OBJ: TNamed offsetdRCErr.Title #sigma
OBJ: TNamed offsetdRCErr.class TPC Err
OBJ: TNamed offsetdRCErrNeg.AxisTitle
OBJ: TNamed offsetdRCErrNeg.Description TPC standard QA variables. Class TPC Err Neg
OBJ: TNamed offsetdRCErrNeg.Legend Q<0
OBJ: TNamed offsetdRCErrNeg.Title #sigma Q<0
OBJ: TNamed offsetdRCErrNeg.class TPC Err Neg
OBJ: TNamed offsetdRCErrPos.AxisTitle
OBJ: TNamed offsetdRCErrPos.Description TPC standard QA variables. Class TPC Err Pos
OBJ: TNamed offsetdRCErrPos.Legend Q>0
OBJ: TNamed offsetdRCErrPos.Title #sigma Q>0
OBJ: TNamed offsetdRCErrPos.class TPC Err Pos
OBJ: TNamed offsetdRCNeg.AxisTitle
OBJ: TNamed offsetdRCNeg.Description TPC standard QA variables. Class TPC Neg
OBJ: TNamed offsetdRCNeg.Legend Q<0
OBJ: TNamed offsetdRCNeg.Title Q<0
OBJ: TNamed offsetdRCNeg.class TPC Neg
OBJ: TNamed offsetdRCPos.AxisTitle
OBJ: TNamed offsetdRCPos.Description TPC standard QA variables. Class TPC Pos
OBJ: TNamed offsetdRCPos.Legend Q>0
OBJ: TNamed offsetdRCPos.Title Q>0
OBJ: TNamed offsetdRCPos.class TPC Pos
OBJ: TNamed offsetdRCchi2.AxisTitle
OBJ: TNamed offsetdRCchi2.Description TPC standard QA variables. Class TPC Chi2
OBJ: TNamed offsetdRCchi2.Legend
OBJ: TNamed offsetdRCchi2.Title #chi2
OBJ: TNamed offsetdRCchi2.class TPC Chi2
OBJ: TNamed offsetdRCchi2Neg.AxisTitle
OBJ: TNamed offsetdRCchi2Neg.Description TPC standard QA variables. Class TPC Chi2 Neg
OBJ: TNamed offsetdRCchi2Neg.Legend Q<0
OBJ: TNamed offsetdRCchi2Neg.Title #chi2 Q<0
OBJ: TNamed offsetdRCchi2Neg.class TPC Chi2 Neg
OBJ: TNamed offsetdRCchi2Pos.AxisTitle
OBJ: TNamed offsetdRCchi2Pos.Description TPC standard QA variables. Class TPC Chi2 Pos
OBJ: TNamed offsetdRCchi2Pos.Legend Q>0
OBJ: TNamed offsetdRCchi2Pos.Title #chi2 Q>0
OBJ: TNamed offsetdRCchi2Pos.class TPC Chi2 Pos
OBJ: TNamed offsetdZA.AxisTitle
OBJ: TNamed offsetdZA.Description TPC standard QA variables. Class TPC ASide
OBJ: TNamed offsetdZA.Legend A side
OBJ: TNamed offsetdZA.Title A side
OBJ: TNamed offsetdZA.class TPC ASide
OBJ: TNamed offsetdZAErr.AxisTitle
OBJ: TNamed offsetdZAErr.Description TPC standard QA variables. Class TPC Err
OBJ: TNamed offsetdZAErr.Legend
OBJ: TNamed offsetdZAErr.Title #sigma
OBJ: TNamed offsetdZAErr.class TPC Err
OBJ: TNamed offsetdZAErrNeg.AxisTitle
OBJ: TNamed offsetdZAErrNeg.Description TPC standard QA variables. Class TPC Err Neg
OBJ: TNamed offsetdZAErrNeg.Legend Q<0
OBJ: TNamed offsetdZAErrNeg.Title #sigma Q<0
OBJ: TNamed offsetdZAErrNeg.class TPC Err Neg
OBJ: TNamed offsetdZAErrPos.AxisTitle
OBJ: TNamed offsetdZAErrPos.Description TPC standard QA variables. Class TPC Err Pos
OBJ: TNamed offsetdZAErrPos.Legend Q>0
OBJ: TNamed offsetdZAErrPos.Title #sigma Q>0
OBJ: TNamed offsetdZAErrPos.class TPC Err Pos
OBJ: TNamed offsetdZANeg.AxisTitle
OBJ: TNamed offsetdZANeg.Description TPC standard QA variables. Class TPC Neg
OBJ: TNamed offsetdZANeg.Legend Q<0
OBJ: TNamed offsetdZANeg.Title Q<0
OBJ: TNamed offsetdZANeg.class TPC Neg
OBJ: TNamed offsetdZAPos.AxisTitle
OBJ: TNamed offsetdZAPos.Description TPC standard QA variables. Class TPC Pos
OBJ: TNamed offsetdZAPos.Legend Q>0
OBJ: TNamed offsetdZAPos.Title Q>0
OBJ: TNamed offsetdZAPos.class TPC Pos
OBJ: TNamed offsetdZAchi2.AxisTitle
OBJ: TNamed offsetdZAchi2.Description TPC standard QA variables. Class TPC Chi2
OBJ: TNamed offsetdZAchi2.Legend
OBJ: TNamed offsetdZAchi2.Title #chi2
OBJ: TNamed offsetdZAchi2.class TPC Chi2
OBJ: TNamed offsetdZAchi2Neg.AxisTitle
OBJ: TNamed offsetdZAchi2Neg.Description TPC standard QA variables. Class TPC Chi2 Neg
OBJ: TNamed offsetdZAchi2Neg.Legend Q<0
OBJ: TNamed offsetdZAchi2Neg.Title #chi2 Q<0
OBJ: TNamed offsetdZAchi2Neg.class TPC Chi2 Neg
OBJ: TNamed offsetdZAchi2Pos.AxisTitle
OBJ: TNamed offsetdZAchi2Pos.Description TPC standard QA variables. Class TPC Chi2 Pos
OBJ: TNamed offsetdZAchi2Pos.Legend Q>0
OBJ: TNamed offsetdZAchi2Pos.Title #chi2 Q>0
OBJ: TNamed offsetdZAchi2Pos.class TPC Chi2 Pos
OBJ: TNamed offsetdZC.AxisTitle
OBJ: TNamed offsetdZC.Description TPC standard QA variables. Class TPC CSide
OBJ: TNamed offsetdZC.Legend C side
OBJ: TNamed offsetdZC.Title C side
OBJ: TNamed offsetdZC.class TPC CSide
OBJ: TNamed offsetdZCErr.AxisTitle
OBJ: TNamed offsetdZCErr.Description TPC standard QA variables. Class TPC Err
OBJ: TNamed offsetdZCErr.Legend
OBJ: TNamed offsetdZCErr.Title #sigma
OBJ: TNamed offsetdZCErr.class TPC Err
OBJ: TNamed offsetdZCErrNeg.AxisTitle
OBJ: TNamed offsetdZCErrNeg.Description TPC standard QA variables. Class TPC Err Neg
OBJ: TNamed offsetdZCErrNeg.Legend Q<0
OBJ: TNamed offsetdZCErrNeg.Title #sigma Q<0
OBJ: TNamed offsetdZCErrNeg.class TPC Err Neg
OBJ: TNamed offsetdZCErrPos.AxisTitle
OBJ: TNamed offsetdZCErrPos.Description TPC standard QA variables. Class TPC Err Pos
OBJ: TNamed offsetdZCErrPos.Legend Q>0
OBJ: TNamed offsetdZCErrPos.Title #sigma Q>0
OBJ: TNamed offsetdZCErrPos.class TPC Err Pos
OBJ: TNamed offsetdZCNeg.AxisTitle
OBJ: TNamed offsetdZCNeg.Description TPC standard QA variables. Class TPC Neg
OBJ: TNamed offsetdZCNeg.Legend Q<0
OBJ: TNamed offsetdZCNeg.Title Q<0
OBJ: TNamed offsetdZCNeg.class TPC Neg
OBJ: TNamed offsetdZCPos.AxisTitle
OBJ: TNamed offsetdZCPos.Description TPC standard QA variables. Class TPC Pos
OBJ: TNamed offsetdZCPos.Legend Q>0
OBJ: TNamed offsetdZCPos.Title Q>0
OBJ: TNamed offsetdZCPos.class TPC Pos
OBJ: TNamed offsetdZCchi2.AxisTitle
OBJ: TNamed offsetdZCchi2.Description TPC standard QA variables. Class TPC Chi2
OBJ: TNamed offsetdZCchi2.Legend
OBJ: TNamed offsetdZCchi2.Title #chi2
OBJ: TNamed offsetdZCchi2.class TPC Chi2
OBJ: TNamed offsetdZCchi2Neg.AxisTitle
OBJ: TNamed offsetdZCchi2Neg.Description TPC standard QA variables. Class TPC Chi2 Neg
OBJ: TNamed offsetdZCchi2Neg.Legend Q<0
OBJ: TNamed offsetdZCchi2Neg.Title #chi2 Q<0
OBJ: TNamed offsetdZCchi2Neg.class TPC Chi2 Neg
OBJ: TNamed offsetdZCchi2Pos.AxisTitle
OBJ: TNamed offsetdZCchi2Pos.Description TPC standard QA variables. Class TPC Chi2 Pos
OBJ: TNamed offsetdZCchi2Pos.Legend Q>0
OBJ: TNamed offsetdZCchi2Pos.Title #chi2 Q>0
OBJ: TNamed offsetdZCchi2Pos.class TPC Chi2 Pos
OBJ: TNamed oroc_A_side.AxisTitle
OBJ: TNamed oroc_A_side.Description TPC standard QA variables. Class TPC ASide OROC
OBJ: TNamed oroc_A_side.Legend A side OROC
OBJ: TNamed oroc_A_side.Title A side OROC
OBJ: TNamed oroc_A_side.class TPC ASide OROC
OBJ: TNamed oroc_C_side.AxisTitle
OBJ: TNamed oroc_C_side.Description TPC standard QA variables. Class TPC CSide OROC
OBJ: TNamed oroc_C_side.Legend C side OROC
OBJ: TNamed oroc_C_side.Title C side OROC
OBJ: TNamed oroc_C_side.class TPC CSide OROC
OBJ: TNamed pass..AxisTitle
OBJ: TNamed pass..Description TPC standard QA variables. Class TPC Class:TObjString
OBJ: TNamed pass..Legend
OBJ: TNamed pass..Title
OBJ: TNamed pass..class TPC Class:TObjString
OBJ: TNamed period..AxisTitle
OBJ: TNamed period..Description TPC standard QA variables. Class TPC Class:TObjString
OBJ: TNamed period..Legend
OBJ: TNamed period..Title
OBJ: TNamed period..class TPC Class:TObjString
OBJ: TNamed phiPull.AxisTitle #phi
OBJ: TNamed phiPull.Description TPC standard QA variables. Class TPC Pull Phi
OBJ: TNamed phiPull.Legend #phi
OBJ: TNamed phiPull.Title pull #phi
OBJ: TNamed phiPull.class TPC Pull Phi
OBJ: TNamed phiPullHighPt.AxisTitle #phi
OBJ: TNamed phiPullHighPt.Description TPC standard QA variables. Class TPC Pull Phi HighPt
OBJ: TNamed phiPullHighPt.Legend #phi high p_{T}
OBJ: TNamed phiPullHighPt.Title pull #phi high p_{T}
OBJ: TNamed phiPullHighPt.class TPC Pull Phi HighPt
OBJ: TNamed ptPull.AxisTitle p_{T}(Gev/c)
OBJ: TNamed ptPull.Description TPC standard QA variables. Class TPC Pull Pt
OBJ: TNamed ptPull.Legend p_{T}
OBJ: TNamed ptPull.Title pull p_{T}
OBJ: TNamed ptPull.class TPC Pull Pt
OBJ: TNamed ptPullHighPt.AxisTitle p_{T}(Gev/c)
OBJ: TNamed ptPullHighPt.Description TPC standard QA variables. Class TPC Pull Pt HighPt
OBJ: TNamed ptPullHighPt.Legend p_{T} high p_{T}
OBJ: TNamed ptPullHighPt.Title pull p_{T} high p_{T}
OBJ: TNamed ptPullHighPt.class TPC Pull Pt HighPt
OBJ: TNamed qOverPt.AxisTitle q/p_{T}(c/GeV)
OBJ: TNamed qOverPt.Description TPC standard QA variables. Class TPC QOverPt
OBJ: TNamed qOverPt.Legend q/p_{T}
OBJ: TNamed qOverPt.Title q/p_{T}
OBJ: TNamed qOverPt.class TPC QOverPt
OBJ: TNamed qOverPtA.AxisTitle q/p_{T}(c/GeV)
OBJ: TNamed qOverPtA.Description TPC standard QA variables. Class TPC QOverPt ASide
OBJ: TNamed qOverPtA.Legend q/p_{T} A side
OBJ: TNamed qOverPtA.Title q/p_{T} A side
OBJ: TNamed qOverPtA.class TPC QOverPt ASide
OBJ: TNamed qOverPtC.AxisTitle q/p_{T}(c/GeV)
OBJ: TNamed qOverPtC.Description TPC standard QA variables. Class TPC QOverPt CSide
OBJ: TNamed qOverPtC.Legend q/p_{T} C side
OBJ: TNamed qOverPtC.Title q/p_{T} C side
OBJ: TNamed qOverPtC.class TPC QOverPt CSide
OBJ: TNamed rawClusterCounter.AxisTitle
OBJ: TNamed rawClusterCounter.Description TPC standard QA variables. Class TPC
OBJ: TNamed rawClusterCounter.Legend
OBJ: TNamed rawClusterCounter.Title
OBJ: TNamed rawClusterCounter.class TPC
OBJ: TNamed rawLowCounter75.html %d<run>/rawQAInformation.png
OBJ: TNamed rawSignalCounter.AxisTitle
OBJ: TNamed rawSignalCounter.Description TPC standard QA variables. Class TPC
OBJ: TNamed rawSignalCounter.Legend
OBJ: TNamed rawSignalCounter.Title
OBJ: TNamed rawSignalCounter.class TPC
OBJ: TNamed resolutionMIP.AxisTitle dEdx(MIP/50)
OBJ: TNamed resolutionMIP.Description TPC standard QA variables. Class TPC RMS dEdx
OBJ: TNamed resolutionMIP.Legend dEdx
OBJ: TNamed resolutionMIP.Title rms dEdx
OBJ: TNamed resolutionMIP.class TPC RMS dEdx
OBJ: TNamed resolutionMIPele.AxisTitle dEdx(MIP/50) Electron
OBJ: TNamed resolutionMIPele.Description TPC standard QA variables. Class TPC RMS dEdx Electron
OBJ: TNamed resolutionMIPele.Legend dEdx e-
OBJ: TNamed resolutionMIPele.Title rms dEdx e-
OBJ: TNamed resolutionMIPele.class TPC RMS dEdx Electron
OBJ: TNamed rmsMult.AxisTitle
OBJ: TNamed rmsMult.Description TPC standard QA variables. Class TPC RMS
OBJ: TNamed rmsMult.Legend
OBJ: TNamed rmsMult.Title rms
OBJ: TNamed rmsMult.class TPC RMS
OBJ: TNamed rmsMultNeg.AxisTitle
OBJ: TNamed rmsMultNeg.Description TPC standard QA variables. Class TPC RMS Neg
OBJ: TNamed rmsMultNeg.Legend Q<0
OBJ: TNamed rmsMultNeg.Title rms Q<0
OBJ: TNamed rmsMultNeg.class TPC RMS Neg
OBJ: TNamed rmsMultPos.AxisTitle
OBJ: TNamed rmsMultPos.Description TPC standard QA variables. Class TPC RMS Pos
OBJ: TNamed rmsMultPos.Legend Q>0
OBJ: TNamed rmsMultPos.Title rms Q>0
OBJ: TNamed rmsMultPos.class TPC RMS Pos
OBJ: TNamed rmsTPCChi2.AxisTitle
OBJ: TNamed rmsTPCChi2.Description TPC standard QA variables. Class TPC RMS Chi2
OBJ: TNamed rmsTPCChi2.Legend
OBJ: TNamed rmsTPCChi2.Title rms #chi2
OBJ: TNamed rmsTPCChi2.class TPC RMS Chi2
OBJ: TNamed rmsTPCncl.AxisTitle Ncl(#)
OBJ: TNamed rmsTPCncl.Description TPC standard QA variables. Class TPC RMS Ncl
OBJ: TNamed rmsTPCncl.Legend Ncl
OBJ: TNamed rmsTPCncl.Title rms Ncl
OBJ: TNamed rmsTPCncl.class TPC RMS Ncl
OBJ: TNamed rmsTPCnclF.AxisTitle Ncl(#)
OBJ: TNamed rmsTPCnclF.Description TPC standard QA variables. Class TPC RMS Ncl
OBJ: TNamed rmsTPCnclF.Legend Ncl
OBJ: TNamed rmsTPCnclF.Title rms Ncl
OBJ: TNamed rmsTPCnclF.class TPC RMS Ncl
OBJ: TNamed rmsVertX.AxisTitle x(cm)
OBJ: TNamed rmsVertX.Description TPC standard QA variables. Class TPC RMS X
OBJ: TNamed rmsVertX.Legend x
OBJ: TNamed rmsVertX.Title rms x
OBJ: TNamed rmsVertX.class TPC RMS X
OBJ: TNamed rmsVertY.AxisTitle y(cm)
OBJ: TNamed rmsVertY.Description TPC standard QA variables. Class TPC RMS Y
OBJ: TNamed rmsVertY.Legend y
OBJ: TNamed rmsVertY.Title rms y
OBJ: TNamed rmsVertY.class TPC RMS Y
OBJ: TNamed rmsVertZ.AxisTitle z(cm)
OBJ: TNamed rmsVertZ.Description TPC standard QA variables. Class TPC RMS Z
OBJ: TNamed rmsVertZ.Legend z
OBJ: TNamed rmsVertZ.Title rms z
OBJ: TNamed rmsVertZ.class TPC RMS Z
OBJ: TNamed run.AxisTitle run
OBJ: TNamed run.Description TPC standard QA variables. Class TPC
OBJ: TNamed run.Legend
OBJ: TNamed run.Title run
OBJ: TNamed run.class Base Index
OBJ: TNamed runType..AxisTitle
OBJ: TNamed runType..Description TPC standard QA variables. Class TPC Class:TObjString
OBJ: TNamed runType..Legend
OBJ: TNamed runType..Title
OBJ: TNamed runType..class TPC Class:TObjString
OBJ: TNamed sector..AxisTitle
OBJ: TNamed sector..Description TPC standard QA variables. Class TPC Sector Class:TVectorT<double>
OBJ: TNamed sector..Legend Sector
OBJ: TNamed sector..Title Sector
OBJ: TNamed sector..class TPC Sector Class:TVectorT<double>
OBJ: TNamed sigmaRelMIPvsSector..AxisTitle dEdx(MIP/50)
OBJ: TNamed sigmaRelMIPvsSector..Description TPC standard QA variables. Class TPC dEdx Sector Class:TVectorT<double>
OBJ: TNamed sigmaRelMIPvsSector..Legend dEdx Sector
OBJ: TNamed sigmaRelMIPvsSector..Title dEdx Sector
OBJ: TNamed sigmaRelMIPvsSector..class TPC dEdx Sector Class:TVectorT<double>
OBJ: TNamed slopeATPCncl.AxisTitle Ncl(#)
OBJ: TNamed slopeATPCncl.Description TPC standard QA variables. Class TPC Ncl
OBJ: TNamed slopeATPCncl.Legend Ncl
OBJ: TNamed slopeATPCncl.Title Ncl
OBJ: TNamed slopeATPCncl.class TPC Ncl
OBJ: TNamed slopeATPCnclErr.AxisTitle Ncl(#)
OBJ: TNamed slopeATPCnclErr.Description TPC standard QA variables. Class TPC Err Ncl
OBJ: TNamed slopeATPCnclErr.Legend Ncl
OBJ: TNamed slopeATPCnclErr.Title #sigma Ncl
OBJ: TNamed slopeATPCnclErr.class TPC Err Ncl
OBJ: TNamed slopeATPCnclF.AxisTitle Ncl(#)
OBJ: TNamed slopeATPCnclF.Description TPC standard QA variables. Class TPC Ncl
OBJ: TNamed slopeATPCnclF.Legend Ncl
OBJ: TNamed slopeATPCnclF.Title Ncl
OBJ: TNamed slopeATPCnclF.class TPC Ncl
OBJ: TNamed slopeATPCnclFErr.AxisTitle Ncl(#)
OBJ: TNamed slopeATPCnclFErr.Description TPC standard QA variables. Class TPC Err Ncl
OBJ: TNamed slopeATPCnclFErr.Legend Ncl
OBJ: TNamed slopeATPCnclFErr.Title #sigma Ncl
OBJ: TNamed slopeATPCnclFErr.class TPC Err Ncl
OBJ: TNamed slopeCTPCncl.AxisTitle Ncl(#)
OBJ: TNamed slopeCTPCncl.Description TPC standard QA variables. Class TPC Ncl
OBJ: TNamed slopeCTPCncl.Legend Ncl
OBJ: TNamed slopeCTPCncl.Title Ncl
OBJ: TNamed slopeCTPCncl.class TPC Ncl
OBJ: TNamed slopeCTPCnclErr.AxisTitle Ncl(#)
OBJ: TNamed slopeCTPCnclErr.Description TPC standard QA variables. Class TPC Err Ncl
OBJ: TNamed slopeCTPCnclErr.Legend Ncl
OBJ: TNamed slopeCTPCnclErr.Title #sigma Ncl
OBJ: TNamed slopeCTPCnclErr.class TPC Err Ncl
OBJ: TNamed slopeCTPCnclF.AxisTitle Ncl(#)
OBJ: TNamed slopeCTPCnclF.Description TPC standard QA variables. Class TPC Ncl
OBJ: TNamed slopeCTPCnclF.Legend Ncl
OBJ: TNamed slopeCTPCnclF.Title Ncl
OBJ: TNamed slopeCTPCnclF.class TPC Ncl
OBJ: TNamed slopeCTPCnclFErr.AxisTitle Ncl(#)
OBJ: TNamed slopeCTPCnclFErr.Description TPC standard QA variables. Class TPC Err Ncl
OBJ: TNamed slopeCTPCnclFErr.Legend Ncl
OBJ: TNamed slopeCTPCnclFErr.Title #sigma Ncl
OBJ: TNamed slopeCTPCnclFErr.class TPC Err Ncl
OBJ: TNamed slopedRA.AxisTitle
OBJ: TNamed slopedRA.Description TPC standard QA variables. Class TPC ASide
OBJ: TNamed slopedRA.Legend A side
OBJ: TNamed slopedRA.Title A side
OBJ: TNamed slopedRA.class TPC ASide
OBJ: TNamed slopedRAErr.AxisTitle
OBJ: TNamed slopedRAErr.Description TPC standard QA variables. Class TPC Err
OBJ: TNamed slopedRAErr.Legend
OBJ: TNamed slopedRAErr.Title #sigma
OBJ: TNamed slopedRAErr.class TPC Err
OBJ: TNamed slopedRAErrNeg.AxisTitle
OBJ: TNamed slopedRAErrNeg.Description TPC standard QA variables. Class TPC Err Neg
OBJ: TNamed slopedRAErrNeg.Legend Q<0
OBJ: TNamed slopedRAErrNeg.Title #sigma Q<0
OBJ: TNamed slopedRAErrNeg.class TPC Err Neg
OBJ: TNamed slopedRAErrPos.AxisTitle
OBJ: TNamed slopedRAErrPos.Description TPC standard QA variables. Class TPC Err Pos
OBJ: TNamed slopedRAErrPos.Legend Q>0
OBJ: TNamed slopedRAErrPos.Title #sigma Q>0
OBJ: TNamed slopedRAErrPos.class TPC Err Pos
OBJ: TNamed slopedRANeg.AxisTitle
OBJ: TNamed slopedRANeg.Description TPC standard QA variables. Class TPC Neg
OBJ: TNamed slopedRANeg.Legend Q<0
OBJ: TNamed slopedRANeg.Title Q<0
OBJ: TNamed slopedRANeg.class TPC Neg
OBJ: TNamed slopedRAPos.AxisTitle
OBJ: TNamed slopedRAPos.Description TPC standard QA variables. Class TPC Pos
OBJ: TNamed slopedRAPos.Legend Q>0
OBJ: TNamed slopedRAPos.Title Q>0
OBJ: TNamed slopedRAPos.class TPC Pos
OBJ: TNamed slopedRAchi2.AxisTitle
OBJ: TNamed slopedRAchi2.Description TPC standard QA variables. Class TPC Chi2
OBJ: TNamed slopedRAchi2.Legend
OBJ: TNamed slopedRAchi2.Title #chi2
OBJ: TNamed slopedRAchi2.class TPC Chi2
OBJ: TNamed slopedRAchi2Neg.AxisTitle
OBJ: TNamed slopedRAchi2Neg.Description TPC standard QA variables. Class TPC Chi2 Neg
OBJ: TNamed slopedRAchi2Neg.Legend Q<0
OBJ: TNamed slopedRAchi2Neg.Title #chi2 Q<0
OBJ: TNamed slopedRAchi2Neg.class TPC Chi2 Neg
OBJ: TNamed slopedRAchi2Pos.AxisTitle
OBJ: TNamed slopedRAchi2Pos.Description TPC standard QA variables. Class TPC Chi2 Pos
OBJ: TNamed slopedRAchi2Pos.Legend Q>0
OBJ: TNamed slopedRAchi2Pos.Title #chi2 Q>0
OBJ: TNamed slopedRAchi2Pos.class TPC Chi2 Pos
OBJ: TNamed slopedRC.AxisTitle
OBJ: TNamed slopedRC.Description TPC standard QA variables. Class TPC CSide
OBJ: TNamed slopedRC.Legend C side
OBJ: TNamed slopedRC.Title C side
OBJ: TNamed slopedRC.class TPC CSide
OBJ: TNamed slopedRCErr.AxisTitle
OBJ: TNamed slopedRCErr.Description TPC standard QA variables. Class TPC Err
OBJ: TNamed slopedRCErr.Legend
OBJ: TNamed slopedRCErr.Title #sigma
OBJ: TNamed slopedRCErr.class TPC Err
OBJ: TNamed slopedRCErrNeg.AxisTitle
OBJ: TNamed slopedRCErrNeg.Description TPC standard QA variables. Class TPC Err Neg
OBJ: TNamed slopedRCErrNeg.Legend Q<0
OBJ: TNamed slopedRCErrNeg.Title #sigma Q<0
OBJ: TNamed slopedRCErrNeg.class TPC Err Neg
OBJ: TNamed slopedRCErrPos.AxisTitle
OBJ: TNamed slopedRCErrPos.Description TPC standard QA variables. Class TPC Err Pos
OBJ: TNamed slopedRCErrPos.Legend Q>0
OBJ: TNamed slopedRCErrPos.Title #sigma Q>0
OBJ: TNamed slopedRCErrPos.class TPC Err Pos
OBJ: TNamed slopedRCNeg.AxisTitle
OBJ: TNamed slopedRCNeg.Description TPC standard QA variables. Class TPC Neg
OBJ: TNamed slopedRCNeg.Legend Q<0
OBJ: TNamed slopedRCNeg.Title Q<0
OBJ: TNamed slopedRCNeg.class TPC Neg
OBJ: TNamed slopedRCPos.AxisTitle
OBJ: TNamed slopedRCPos.Description TPC standard QA variables. Class TPC Pos
OBJ: TNamed slopedRCPos.Legend Q>0
OBJ: TNamed slopedRCPos.Title Q>0
OBJ: TNamed slopedRCPos.class TPC Pos
OBJ: TNamed slopedRCchi2.AxisTitle
OBJ: TNamed slopedRCchi2.Description TPC standard QA variables. Class TPC Chi2
OBJ: TNamed slopedRCchi2.Legend
OBJ: TNamed slopedRCchi2.Title #chi2
OBJ: TNamed slopedRCchi2.class TPC Chi2
OBJ: TNamed slopedRCchi2Neg.AxisTitle
OBJ: TNamed slopedRCchi2Neg.Description TPC standard QA variables. Class TPC Chi2 Neg
OBJ: TNamed slopedRCchi2Neg.Legend Q<0
OBJ: TNamed slopedRCchi2Neg.Title #chi2 Q<0
OBJ: TNamed slopedRCchi2Neg.class TPC Chi2 Neg
OBJ: TNamed slopedRCchi2Pos.AxisTitle
OBJ: TNamed slopedRCchi2Pos.Description TPC standard QA variables. Class TPC Chi2 Pos
OBJ: TNamed slopedRCchi2Pos.Legend Q>0
OBJ: TNamed slopedRCchi2Pos.Title #chi2 Q>0
OBJ: TNamed slopedRCchi2Pos.class TPC Chi2 Pos
OBJ: TNamed slopedZA.AxisTitle
OBJ: TNamed slopedZA.Description TPC standard QA variables. Class TPC ASide
OBJ: TNamed slopedZA.Legend A side
OBJ: TNamed slopedZA.Title A side
OBJ: TNamed slopedZA.class TPC ASide
OBJ: TNamed slopedZAErr.AxisTitle
OBJ: TNamed slopedZAErr.Description TPC standard QA variables. Class TPC Err
OBJ: TNamed slopedZAErr.Legend
OBJ: TNamed slopedZAErr.Title #sigma
OBJ: TNamed slopedZAErr.class TPC Err
OBJ: TNamed slopedZAErrNeg.AxisTitle
OBJ: TNamed slopedZAErrNeg.Description TPC standard QA variables. Class TPC Err Neg
OBJ: TNamed slopedZAErrNeg.Legend Q<0
OBJ: TNamed slopedZAErrNeg.Title #sigma Q<0
OBJ: TNamed slopedZAErrNeg.class TPC Err Neg
OBJ: TNamed slopedZAErrPos.AxisTitle
OBJ: TNamed slopedZAErrPos.Description TPC standard QA variables. Class TPC Err Pos
OBJ: TNamed slopedZAErrPos.Legend Q>0
OBJ: TNamed slopedZAErrPos.Title #sigma Q>0
OBJ: TNamed slopedZAErrPos.class TPC Err Pos
OBJ: TNamed slopedZANeg.AxisTitle
OBJ: TNamed slopedZANeg.Description TPC standard QA variables. Class TPC Neg
OBJ: TNamed slopedZANeg.Legend Q<0
OBJ: TNamed slopedZANeg.Title Q<0
OBJ: TNamed slopedZANeg.class TPC Neg
OBJ: TNamed slopedZAPos.AxisTitle
OBJ: TNamed slopedZAPos.Description TPC standard QA variables. Class TPC Pos
OBJ: TNamed slopedZAPos.Legend Q>0
OBJ: TNamed slopedZAPos.Title Q>0
OBJ: TNamed slopedZAPos.class TPC Pos
OBJ: TNamed slopedZAchi2.AxisTitle
OBJ: TNamed slopedZAchi2.Description TPC standard QA variables. Class TPC Chi2
OBJ: TNamed slopedZAchi2.Legend
OBJ: TNamed slopedZAchi2.Title #chi2
OBJ: TNamed slopedZAchi2.class TPC Chi2
OBJ: TNamed slopedZAchi2Neg.AxisTitle
OBJ: TNamed slopedZAchi2Neg.Description TPC standard QA variables. Class TPC Chi2 Neg
OBJ: TNamed slopedZAchi2Neg.Legend Q<0
OBJ: TNamed slopedZAchi2Neg.Title #chi2 Q<0
OBJ: TNamed slopedZAchi2Neg.class TPC Chi2 Neg
OBJ: TNamed slopedZAchi2Pos.AxisTitle
OBJ: TNamed slopedZAchi2Pos.Description TPC standard QA variables. Class TPC Chi2 Pos
OBJ: TNamed slopedZAchi2Pos.Legend Q>0
OBJ: TNamed slopedZAchi2Pos.Title #chi2 Q>0
OBJ: TNamed slopedZAchi2Pos.class TPC Chi2 Pos
OBJ: TNamed slopedZC.AxisTitle
OBJ: TNamed slopedZC.Description TPC standard QA variables. Class TPC CSide
OBJ: TNamed slopedZC.Legend C side
OBJ: TNamed slopedZC.Title C side
OBJ: TNamed slopedZC.class TPC CSide
OBJ: TNamed slopedZCErr.AxisTitle
OBJ: TNamed slopedZCErr.Description TPC standard QA variables. Class TPC Err
OBJ: TNamed slopedZCErr.Legend
OBJ: TNamed slopedZCErr.Title #sigma
OBJ: TNamed slopedZCErr.class TPC Err
OBJ: TNamed slopedZCErrNeg.AxisTitle
OBJ: TNamed slopedZCErrNeg.Description TPC standard QA variables. Class TPC Err Neg
OBJ: TNamed slopedZCErrNeg.Legend Q<0
OBJ: TNamed slopedZCErrNeg.Title #sigma Q<0
OBJ: TNamed slopedZCErrNeg.class TPC Err Neg
OBJ: TNamed slopedZCErrPos.AxisTitle
OBJ: TNamed slopedZCErrPos.Description TPC standard QA variables. Class TPC Err Pos
OBJ: TNamed slopedZCErrPos.Legend Q>0
OBJ: TNamed slopedZCErrPos.Title #sigma Q>0
OBJ: TNamed slopedZCErrPos.class TPC Err Pos
OBJ: TNamed slopedZCNeg.AxisTitle
OBJ: TNamed slopedZCNeg.Description TPC standard QA variables. Class TPC Neg
OBJ: TNamed slopedZCNeg.Legend Q<0
OBJ: TNamed slopedZCNeg.Title Q<0
OBJ: TNamed slopedZCNeg.class TPC Neg
OBJ: TNamed slopedZCPos.AxisTitle
OBJ: TNamed slopedZCPos.Description TPC standard QA variables. Class TPC Pos
OBJ: TNamed slopedZCPos.Legend Q>0
OBJ: TNamed slopedZCPos.Title Q>0
OBJ: TNamed slopedZCPos.class TPC Pos
OBJ: TNamed slopedZCchi2.AxisTitle
OBJ: TNamed slopedZCchi2.Description TPC standard QA variables. Class TPC Chi2
OBJ: TNamed slopedZCchi2.Legend
OBJ: TNamed slopedZCchi2.Title #chi2
OBJ: TNamed slopedZCchi2.class TPC Chi2
OBJ: TNamed slopedZCchi2Neg.AxisTitle
OBJ: TNamed slopedZCchi2Neg.Description TPC standard QA variables. Class TPC Chi2 Neg
OBJ: TNamed slopedZCchi2Neg.Legend Q<0
OBJ: TNamed slopedZCchi2Neg.Title #chi2 Q<0
OBJ: TNamed slopedZCchi2Neg.class TPC Chi2 Neg
OBJ: TNamed slopedZCchi2Pos.AxisTitle
OBJ: TNamed slopedZCchi2Pos.Description TPC standard QA variables. Class TPC Chi2 Pos
OBJ: TNamed slopedZCchi2Pos.Legend Q>0
OBJ: TNamed slopedZCchi2Pos.Title #chi2 Q>0
OBJ: TNamed slopedZCchi2Pos.class TPC Chi2 Pos
OBJ: TNamed startTimeGRP.AxisTitle
OBJ: TNamed startTimeGRP.Description TPC standard QA variables. Class TPC
OBJ: TNamed startTimeGRP.Legend
OBJ: TNamed startTimeGRP.Title
OBJ: TNamed startTimeGRP.class TPC
OBJ: TNamed stopTimeGRP.AxisTitle
OBJ: TNamed stopTimeGRP.Description TPC standard QA variables. Class TPC
OBJ: TNamed stopTimeGRP.Legend
OBJ: TNamed stopTimeGRP.Title
OBJ: TNamed stopTimeGRP.class TPC
OBJ: TNamed time.AxisTitle
OBJ: TNamed time.Description TPC standard QA variables. Class TPC
OBJ: TNamed time.Legend
OBJ: TNamed time.Title
OBJ: TNamed time.class TPC
OBJ: TNamed tpcConstrainPhiA.AxisTitle #phi
OBJ: TNamed tpcConstrainPhiA.Description TPC standard QA variables. Class TPC Constrain Phi ASide
OBJ: TNamed tpcConstrainPhiA.Legend #phi A side
OBJ: TNamed tpcConstrainPhiA.Title Constrain #phi A side
OBJ: TNamed tpcConstrainPhiA.class TPC Constrain Phi ASide
OBJ: TNamed tpcConstrainPhiC.AxisTitle #phi
OBJ: TNamed tpcConstrainPhiC.Description TPC standard QA variables. Class TPC Constrain Phi CSide
OBJ: TNamed tpcConstrainPhiC.Legend #phi C side
OBJ: TNamed tpcConstrainPhiC.Title Constrain #phi C side
OBJ: TNamed tpcConstrainPhiC.class TPC Constrain Phi CSide
OBJ: TNamed tpcItsMatchA.AxisTitle Eff(unit)
OBJ: TNamed tpcItsMatchA.Description TPC standard QA variables. Class TPC Eff ASide
OBJ: TNamed tpcItsMatchA.Legend Eff A side
OBJ: TNamed tpcItsMatchA.Title Eff A side
OBJ: TNamed tpcItsMatchA.class TPC Eff ASide
OBJ: TNamed tpcItsMatchC.AxisTitle Eff(unit)
OBJ: TNamed tpcItsMatchC.Description TPC standard QA variables. Class TPC Eff CSide
OBJ: TNamed tpcItsMatchC.Legend Eff C side
OBJ: TNamed tpcItsMatchC.Title Eff C side
OBJ: TNamed tpcItsMatchC.class TPC Eff CSide
OBJ: TNamed tpcItsMatchHighPtA.AxisTitle Eff(unit)
OBJ: TNamed tpcItsMatchHighPtA.Description TPC standard QA variables. Class TPC Eff ASide HighPt
OBJ: TNamed tpcItsMatchHighPtA.Legend Eff A side high p_{T}
OBJ: TNamed tpcItsMatchHighPtA.Title Eff A side high p_{T}
OBJ: TNamed tpcItsMatchHighPtA.class TPC Eff ASide HighPt
OBJ: TNamed tpcItsMatchHighPtC.AxisTitle Eff(unit)
OBJ: TNamed tpcItsMatchHighPtC.Description TPC standard QA variables. Class TPC Eff CSide HighPt
OBJ: TNamed tpcItsMatchHighPtC.Legend Eff C side high p_{T}
OBJ: TNamed tpcItsMatchHighPtC.Title Eff C side high p_{T}
OBJ: TNamed tpcItsMatchHighPtC.class TPC Eff CSide HighPt
OBJ: TNamed vertAll.AxisTitle
OBJ: TNamed vertAll.Description TPC standard QA variables. Class TPC
OBJ: TNamed vertAll.Legend
OBJ: TNamed vertAll.Title
OBJ: TNamed vertAll.class TPC
OBJ: TNamed vertOK.AxisTitle
OBJ: TNamed vertOK.Description TPC standard QA variables. Class TPC
OBJ: TNamed vertOK.Legend
OBJ: TNamed vertOK.Title
OBJ: TNamed vertOK.class TPC
OBJ: TNamed vertStatus.AxisTitle
OBJ: TNamed vertStatus.Description TPC standard QA variables. Class TPC
OBJ: TNamed vertStatus.Legend
OBJ: TNamed vertStatus.Title
OBJ: TNamed vertStatus.class TPC
OBJ: TNamed yPull.AxisTitle y(cm)
OBJ: TNamed yPull.Description TPC standard QA variables. Class TPC Pull Y
OBJ: TNamed yPull.Legend y
OBJ: TNamed yPull.Title pull y
OBJ: TNamed yPull.class TPC Pull Y
OBJ: TNamed yPullHighPt.AxisTitle y(cm)
OBJ: TNamed yPullHighPt.Description TPC standard QA variables. Class TPC Pull Y HighPt
OBJ: TNamed yPullHighPt.Legend y high p_{T}
OBJ: TNamed yPullHighPt.Title pull y high p_{T}
OBJ: TNamed yPullHighPt.class TPC Pull Y HighPt
OBJ: TNamed year.AxisTitle y(cm)
OBJ: TNamed year.Description TPC standard QA variables. Class TPC Y
OBJ: TNamed year.Legend y
OBJ: TNamed year.Title y
OBJ: TNamed year.class TPC Y
OBJ: TNamed zPull.AxisTitle z(cm)
OBJ: TNamed zPull.Description TPC standard QA variables. Class TPC Pull Z
OBJ: TNamed zPull.Legend z
OBJ: TNamed zPull.Title pull z
OBJ: TNamed zPull.class TPC Pull Z
OBJ: TNamed zPullHighPt.AxisTitle z(cm)
OBJ: TNamed zPullHighPt.Description TPC standard QA variables. Class TPC Pull Z HighPt
OBJ: TNamed zPullHighPt.Legend z high p_{T}
OBJ: TNamed zPullHighPt.Title pull z high p_{T}
OBJ: TNamed zPullHighPt.class TPC Pull Z HighPt
Info in <qatpcAddMetadata>: Start processing Tree tpcQA
Info in <qatpcAddMetadata>: End
Info in <AliExternalInfo::SetupVariables>: Information will be stored/retrieved in/from /homeold/miranov/AliExternalInfoCache//data/2017/LHC17*/cpass1_pass1/
Info in <AliExternalInfo::GetChain>: Files to add to chain: /homeold/miranov/AliExternalInfoCache//data/2017/LHC17c/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17d/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17e/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17f/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17g/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17h/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17i/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17j/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17k/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17l/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17m/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17o/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17p/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17q/cpass1_pass1/EVS_trending.root
/homeold/miranov/AliExternalInfoCache//data/2017/LHC17r/cpass1_pass1/EVS_trending.root
Info in <AliExternalInfo::SetupVariables>: Information will be stored/retrieved in/from /homeold/miranov/AliExternalInfoCache//data/2017/LHC17*/cpass1_pass1/
Info in <AliExternalInfo::AddChain>: Add to internal Chain: /homeold/miranov/AliExternalInfoCache//data/2017/LHC17*/cpass1_pass1/EVS_trending.root
Info in <AliExternalInfo::AddChain>: with tree name: trending
Info in <AliExternalInfo::SetupVariables>: Information will be stored/retrieved in/from /homeold/miranov/AliExternalInfoCache//data/2017/
Info in <AliExternalInfo::GetChain>: Files to add to chain: /homeold/miranov/AliExternalInfoCache//data/2017/rawTPC_OCDBscan.root
Info in <AliExternalInfo::SetupVariables>: Information will be stored/retrieved in/from /homeold/miranov/AliExternalInfoCache//data/2017/
Info in <AliExternalInfo::AddChain>: Add to internal Chain: /homeold/miranov/AliExternalInfoCache//data/2017/rawTPC_OCDBscan.root
Info in <AliExternalInfo::AddChain>: with tree name: dcs
AliTreePlayer::MakeCacheTree(tree,"resolutionMIP:meanMIPeleR:tpcItsMatchA:bz0:interactionRate:qmaxQASum:qmaxQASumIn:qmaxQASumOut:qmaxQASumR:run:time","TMVAInput.root","MVAInput","meanMIP>30&&run==QA.EVS.run");
In [5]:
AliTreePlayer::MakeCacheTree(tree,"resolutionMIP:meanMIPeleR:tpcItsMatchA:bz0:interactionRate:qmaxQASum:qmaxQASumIn:qmaxQASumOut:qmaxQASumR:run:time","TMVAInput.root","MVAInput","meanMIP>30&&run==QA.EVS.run");
In [6]:
TString layoutString("Layout=TANH|20,LINEAR");
TString training0("LearningRate=1e-5,Momentum=0.5,Repetitions=1,ConvergenceSteps=500,BatchSize=50,"
"TestRepetitions=7,WeightDecay=0.01,Regularization=L1,DropConfig=0.5+0.5+0.5+0.5,"
"DropRepetitions=2");
TString training1("LearningRate=1e-5,Momentum=0.9,Repetitions=1,ConvergenceSteps=170,BatchSize=30,"
"TestRepetitions=7,WeightDecay=0.01,Regularization=L1,DropConfig=0.1+0.1+0.1,DropRepetitions="
"1");
TString trainingStrategyString("TrainingStrategy=");
trainingStrategyString += training0 + "|" + training1;
TString dnnOptions("!H:V:ErrorStrategy=SUMOFSQUARES:VarTransform=G:WeightInitialization=XAVIERUNIFORM:Architecture=CPU");
dnnOptions.Append(":");
dnnOptions.Append(layoutString);
dnnOptions.Append(":");
dnnOptions.Append(trainingStrategyString);
///
AliNDFunctionInterface::registerMethod("BDTRF25_8","!H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8",TMVA::Types::kBDT);
AliNDFunctionInterface::registerMethod("BDTRF12_16", "!H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16", TMVA::Types::kBDT);
AliNDFunctionInterface::registerMethod("KNN","nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim", TMVA::Types::kKNN);
AliNDFunctionInterface::registerMethod("MLP", "!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles=20000:HiddenLayers=N+20:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15:!UseRegulator",TMVA::Types::kMLP);
AliNDFunctionInterface::registerMethod("DNN_CPU",dnnOptions.Data(), TMVA::Types::kDNN);
In [7]:
Int_t nRegression=10;
TFile *f= TFile::Open("TMVAInput.root");
f->GetObject("MVAInput",treeCache);
gSystem->Unlink("TMVA_RegressionOutput.root");
TString output="TMVA_RegressionOutput.root#";
for (Int_t iBoot=0; iBoot<nRegression; iBoot++) {
AliNDFunctionInterface::FitMVARegression(output+"resolutionMIP"+iBoot,treeCache, "resolutionMIP", "interactionRate>0", "interactionRate:bz0:qmaxQASum:qmaxQASumR", "BDTRF25_8:BDTRF12_16:KNN", "");
AliNDFunctionInterface::FitMVARegression(output+"meanMIPeleR"+iBoot,treeCache, "meanMIPeleR", "interactionRate>0", "interactionRate:bz0:qmaxQASum:qmaxQASumR", "BDTRF25_8:BDTRF12_16:KNN","");
AliNDFunctionInterface::FitMVARegression(output+"tpcItsMatchA"+iBoot,treeCache, "tpcItsMatchA", "interactionRate>0", "interactionRate:bz0:qmaxQASum:qmaxQASumR", "BDTRF25_8:BDTRF12_16:KNN","");
}
DataSetInfo : [resolutionMIP0] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[resolutionMIP0] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [resolutionMIP0] : Number of events in input trees
: Dataset[resolutionMIP0] : Regression requirement: "interactionRate>0"
: Dataset[resolutionMIP0] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[resolutionMIP0] : Regression -- efficiency : 0.99765
: Dataset[resolutionMIP0] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[resolutionMIP0] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[resolutionMIP0] : such that the effective (weighted) number of events in each class is the same
: Dataset[resolutionMIP0] : (and equals the number of events (entries) given for class=0 )
: Dataset[resolutionMIP0] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[resolutionMIP0] : ... (note that N_j is the sum of TRAINING events
: Dataset[resolutionMIP0] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[resolutionMIP0] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [resolutionMIP0] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: resolutionMIP: 0.074520 0.0025165 [ 0.069241 0.10270 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : qmaxQASum : 4.724e-01
: 2 : interactionRate : 3.321e-01
: 3 : qmaxQASumR : 9.835e-02
: 4 : bz0 : 7.688e-02
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0535 sec
: Dataset[resolutionMIP0] : Create results for training
: Dataset[resolutionMIP0] : Evaluation of BDTRF25_8 on training sample
: Dataset[resolutionMIP0] : Elapsed time for evaluation of 424 events: 0.00272 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP0/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP0/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0578 sec
: Dataset[resolutionMIP0] : Create results for training
: Dataset[resolutionMIP0] : Evaluation of BDTRF12_16 on training sample
: Dataset[resolutionMIP0] : Elapsed time for evaluation of 424 events: 0.00189 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP0/weights/TMVARegression_BDTRF12_16.weights.xml
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/resolutionMIP0/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000822 sec
: Dataset[resolutionMIP0] : Create results for training
: Dataset[resolutionMIP0] : Evaluation of KNN on training sample
: Dataset[resolutionMIP0] : Elapsed time for evaluation of 424 events: 0.00658 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP0/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: resolutionMIP0/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: resolutionMIP0/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: resolutionMIP0/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file resolutionMIP0/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file resolutionMIP0/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file resolutionMIP0/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[resolutionMIP0] : Create results for testing
: Dataset[resolutionMIP0] : Evaluation of BDTRF25_8 on testing sample
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
: Dataset[resolutionMIP0] : Elapsed time for evaluation of 424 events: 0.00292 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[resolutionMIP0] : Create results for testing
: Dataset[resolutionMIP0] : Evaluation of BDTRF12_16 on testing sample
: Dataset[resolutionMIP0] : Elapsed time for evaluation of 424 events: 0.00155 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[resolutionMIP0] : Create results for testing
: Dataset[resolutionMIP0] : Evaluation of KNN on testing sample
: Dataset[resolutionMIP0] : Elapsed time for evaluation of 424 events: 0.00549 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00246 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0024 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00126 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00107 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
: Elapsed time for evaluation of 424 events: 0.0055 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00508 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: resolutionMIP0 BDTRF12_16 :-9.25e-05 1.63e-06 0.00175 0.000664 | 1.371 1.348
: resolutionMIP0 BDTRF25_8 :-8.70e-05 2.62e-05 0.00169 0.000686 | 1.330 1.312
: resolutionMIP0 KNN : 2.95e-05 0.000113 0.00200 0.000909 | 0.997 0.969
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: resolutionMIP0 BDTRF12_16 :-7.03e-06-7.37e-06 0.000301 0.000210 | 1.738 1.817
: resolutionMIP0 BDTRF25_8 : 3.29e-06 1.92e-05 0.000440 0.000380 | 1.577 1.633
: resolutionMIP0 KNN : 1.68e-05 9.13e-05 0.00182 0.000889 | 1.000 0.975
: --------------------------------------------------------------------------------------------------
:
Dataset:resolutionMIP0 : Created tree 'TestTree' with 424 events
:
Dataset:resolutionMIP0 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [meanMIPeleR0] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[meanMIPeleR0] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [meanMIPeleR0] : Number of events in input trees
: Dataset[meanMIPeleR0] : Regression requirement: "interactionRate>0"
: Dataset[meanMIPeleR0] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[meanMIPeleR0] : Regression -- efficiency : 0.99765
: Dataset[meanMIPeleR0] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[meanMIPeleR0] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[meanMIPeleR0] : such that the effective (weighted) number of events in each class is the same
: Dataset[meanMIPeleR0] : (and equals the number of events (entries) given for class=0 )
: Dataset[meanMIPeleR0] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[meanMIPeleR0] : ... (note that N_j is the sum of TRAINING events
: Dataset[meanMIPeleR0] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[meanMIPeleR0] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [meanMIPeleR0] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: meanMIPeleR: 1.6959 0.055219 [ 1.6678 2.8173 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 1.422e-01
: 2 : qmaxQASum : 1.144e-01
: 3 : qmaxQASumR : 8.645e-02
: 4 : bz0 : 7.106e-03
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0607 sec
: Dataset[meanMIPeleR0] : Create results for training
: Dataset[meanMIPeleR0] : Evaluation of BDTRF25_8 on training sample
: Dataset[meanMIPeleR0] : Elapsed time for evaluation of 424 events: 0.00274 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR0/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR0/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0648 sec
: Dataset[meanMIPeleR0] : Create results for training
: Dataset[meanMIPeleR0] : Evaluation of BDTRF12_16 on training sample
: Dataset[meanMIPeleR0] : Elapsed time for evaluation of 424 events: 0.00176 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR0/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR0/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000701 sec
: Dataset[meanMIPeleR0] : Create results for training
: Dataset[meanMIPeleR0] : Evaluation of KNN on training sample
: Dataset[meanMIPeleR0] : Elapsed time for evaluation of 424 events: 0.00488 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR0/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: meanMIPeleR0/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: meanMIPeleR0/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: meanMIPeleR0/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file meanMIPeleR0/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file meanMIPeleR0/weights/TMVARegression_BDTRF12_16.weights.xml
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Weight file meanMIPeleR0/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[meanMIPeleR0] : Create results for testing
: Dataset[meanMIPeleR0] : Evaluation of BDTRF25_8 on testing sample
: Dataset[meanMIPeleR0] : Elapsed time for evaluation of 424 events: 0.00288 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[meanMIPeleR0] : Create results for testing
: Dataset[meanMIPeleR0] : Evaluation of BDTRF12_16 on testing sample
: Dataset[meanMIPeleR0] : Elapsed time for evaluation of 424 events: 0.00156 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[meanMIPeleR0] : Create results for testing
: Dataset[meanMIPeleR0] : Evaluation of KNN on testing sample
: Dataset[meanMIPeleR0] : Elapsed time for evaluation of 424 events: 0.00709 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00256 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00219 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00134 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00129 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00539 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00637 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: meanMIPeleR0 BDTRF25_8 : -0.00120 0.000203 0.0374 0.00457 | 0.241 0.238
: meanMIPeleR0 BDTRF12_16 : -0.00210 0.000505 0.0541 0.00719 | 0.242 0.242
: meanMIPeleR0 KNN : 0.000113 0.00263 0.0534 0.0133 | 0.223 0.223
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: meanMIPeleR0 BDTRF25_8 :-9.48e-05-8.36e-05 0.00268 0.00196 | 0.314 0.343
: meanMIPeleR0 BDTRF12_16 :-2.95e-05 1.42e-05 0.000875 0.000731 | 0.396 0.409
: meanMIPeleR0 KNN :-0.000360 0.00215 0.0531 0.0130 | 0.167 0.167
: --------------------------------------------------------------------------------------------------
:
Dataset:meanMIPeleR0 : Created tree 'TestTree' with 424 events
:
Dataset:meanMIPeleR0 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [tpcItsMatchA0] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[tpcItsMatchA0] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [tpcItsMatchA0] : Number of events in input trees
: Dataset[tpcItsMatchA0] : Regression requirement: "interactionRate>0"
: Dataset[tpcItsMatchA0] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[tpcItsMatchA0] : Regression -- efficiency : 0.99765
: Dataset[tpcItsMatchA0] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[tpcItsMatchA0] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[tpcItsMatchA0] : such that the effective (weighted) number of events in each class is the same
: Dataset[tpcItsMatchA0] : (and equals the number of events (entries) given for class=0 )
: Dataset[tpcItsMatchA0] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[tpcItsMatchA0] : ... (note that N_j is the sum of TRAINING events
: Dataset[tpcItsMatchA0] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[tpcItsMatchA0] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [tpcItsMatchA0] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: tpcItsMatchA: 0.73917 0.071090 [ 0.49591 0.93753 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 8.845e-01
: 2 : qmaxQASumR : 5.294e-01
: 3 : bz0 : 4.374e-01
: 4 : qmaxQASum : 2.876e-01
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0585 sec
: Dataset[tpcItsMatchA0] : Create results for training
: Dataset[tpcItsMatchA0] : Evaluation of BDTRF25_8 on training sample
: Dataset[tpcItsMatchA0] : Elapsed time for evaluation of 424 events: 0.00278 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA0/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA0/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0789 sec
: Dataset[tpcItsMatchA0] : Create results for training
: Dataset[tpcItsMatchA0] : Evaluation of BDTRF12_16 on training sample
: Dataset[tpcItsMatchA0] : Elapsed time for evaluation of 424 events: 0.002 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA0/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA0/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.0012 sec
: Dataset[tpcItsMatchA0] : Create results for training
: Dataset[tpcItsMatchA0] : Evaluation of KNN on training sample
: Dataset[tpcItsMatchA0] : Elapsed time for evaluation of 424 events: 0.00519 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA0/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: tpcItsMatchA0/weights/TMVARegression_BDTRF25_8.weights.xml
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: tpcItsMatchA0/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: tpcItsMatchA0/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file tpcItsMatchA0/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file tpcItsMatchA0/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file tpcItsMatchA0/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[tpcItsMatchA0] : Create results for testing
: Dataset[tpcItsMatchA0] : Evaluation of BDTRF25_8 on testing sample
: Dataset[tpcItsMatchA0] : Elapsed time for evaluation of 424 events: 0.00278 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[tpcItsMatchA0] : Create results for testing
: Dataset[tpcItsMatchA0] : Evaluation of BDTRF12_16 on testing sample
: Dataset[tpcItsMatchA0] : Elapsed time for evaluation of 424 events: 0.0017 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[tpcItsMatchA0] : Create results for testing
: Dataset[tpcItsMatchA0] : Evaluation of KNN on testing sample
: Dataset[tpcItsMatchA0] : Elapsed time for evaluation of 424 events: 0.00565 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00203 sec
: TestRegression (training)
: Calculate regression for all events
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
: Elapsed time for evaluation of 424 events: 0.00245 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00163 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00137 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00511 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00492 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA0 BDTRF12_16 :-0.000181-0.000942 0.0169 0.0105 | 1.238 1.251
: tpcItsMatchA0 BDTRF25_8 : -0.00138 -0.00228 0.0170 0.0102 | 1.229 1.235
: tpcItsMatchA0 KNN : -0.00327 -0.00325 0.0288 0.0178 | 1.032 0.963
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA0 BDTRF12_16 :-5.05e-05-0.000115 0.00254 0.00204 | 2.230 2.242
: tpcItsMatchA0 BDTRF25_8 :-0.000784 -0.00106 0.00662 0.00606 | 1.777 1.782
: tpcItsMatchA0 KNN : -0.00344 -0.00416 0.0259 0.0175 | 1.225 1.103
: --------------------------------------------------------------------------------------------------
:
Dataset:tpcItsMatchA0 : Created tree 'TestTree' with 424 events
:
Dataset:tpcItsMatchA0 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
DataSetInfo : [resolutionMIP1] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[resolutionMIP1] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [resolutionMIP1] : Number of events in input trees
: Dataset[resolutionMIP1] : Regression requirement: "interactionRate>0"
: Dataset[resolutionMIP1] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[resolutionMIP1] : Regression -- efficiency : 0.99765
: Dataset[resolutionMIP1] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[resolutionMIP1] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[resolutionMIP1] : such that the effective (weighted) number of events in each class is the same
: Dataset[resolutionMIP1] : (and equals the number of events (entries) given for class=0 )
: Dataset[resolutionMIP1] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[resolutionMIP1] : ... (note that N_j is the sum of TRAINING events
: Dataset[resolutionMIP1] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[resolutionMIP1] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [resolutionMIP1] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: resolutionMIP: 0.074520 0.0025165 [ 0.069241 0.10270 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : qmaxQASum : 4.724e-01
: 2 : interactionRate : 3.321e-01
: 3 : qmaxQASumR : 9.835e-02
: 4 : bz0 : 7.688e-02
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0564 sec
: Dataset[resolutionMIP1] : Create results for training
: Dataset[resolutionMIP1] : Evaluation of BDTRF25_8 on training sample
: Dataset[resolutionMIP1] : Elapsed time for evaluation of 424 events: 0.00279 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP1/weights/TMVARegression_BDTRF25_8.weights.xml
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/resolutionMIP1/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.068 sec
: Dataset[resolutionMIP1] : Create results for training
: Dataset[resolutionMIP1] : Evaluation of BDTRF12_16 on training sample
: Dataset[resolutionMIP1] : Elapsed time for evaluation of 424 events: 0.00181 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP1/weights/TMVARegression_BDTRF12_16.weights.xml
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/resolutionMIP1/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000945 sec
: Dataset[resolutionMIP1] : Create results for training
: Dataset[resolutionMIP1] : Evaluation of KNN on training sample
: Dataset[resolutionMIP1] : Elapsed time for evaluation of 424 events: 0.00565 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP1/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: resolutionMIP1/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: resolutionMIP1/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: resolutionMIP1/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file resolutionMIP1/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file resolutionMIP1/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file resolutionMIP1/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[resolutionMIP1] : Create results for testing
: Dataset[resolutionMIP1] : Evaluation of BDTRF25_8 on testing sample
: Dataset[resolutionMIP1] : Elapsed time for evaluation of 424 events: 0.00312 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[resolutionMIP1] : Create results for testing
: Dataset[resolutionMIP1] : Evaluation of BDTRF12_16 on testing sample
: Dataset[resolutionMIP1] : Elapsed time for evaluation of 424 events: 0.00227 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[resolutionMIP1] : Create results for testing
: Dataset[resolutionMIP1] : Evaluation of KNN on testing sample
: Dataset[resolutionMIP1] : Elapsed time for evaluation of 424 events: 0.00698 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00219 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00215 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0016 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00143 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00514 sec
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00602 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: resolutionMIP1 BDTRF12_16 :-9.27e-05 1.64e-05 0.00170 0.000710 | 1.327 1.310
: resolutionMIP1 BDTRF25_8 :-0.000115-3.03e-06 0.00169 0.000680 | 1.374 1.357
: resolutionMIP1 KNN : 2.95e-05 0.000113 0.00200 0.000909 | 0.997 0.969
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: resolutionMIP1 BDTRF12_16 :-1.85e-07-8.71e-06 0.000165 0.000134 | 1.923 1.962
: resolutionMIP1 BDTRF25_8 :-1.03e-05-3.13e-05 0.000436 0.000355 | 1.620 1.697
: resolutionMIP1 KNN : 1.68e-05 9.13e-05 0.00182 0.000889 | 1.000 0.975
: --------------------------------------------------------------------------------------------------
:
Dataset:resolutionMIP1 : Created tree 'TestTree' with 424 events
:
Dataset:resolutionMIP1 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [meanMIPeleR1] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[meanMIPeleR1] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [meanMIPeleR1] : Number of events in input trees
: Dataset[meanMIPeleR1] : Regression requirement: "interactionRate>0"
: Dataset[meanMIPeleR1] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[meanMIPeleR1] : Regression -- efficiency : 0.99765
: Dataset[meanMIPeleR1] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[meanMIPeleR1] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[meanMIPeleR1] : such that the effective (weighted) number of events in each class is the same
: Dataset[meanMIPeleR1] : (and equals the number of events (entries) given for class=0 )
: Dataset[meanMIPeleR1] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[meanMIPeleR1] : ... (note that N_j is the sum of TRAINING events
: Dataset[meanMIPeleR1] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[meanMIPeleR1] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [meanMIPeleR1] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: meanMIPeleR: 1.6959 0.055219 [ 1.6678 2.8173 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 1.422e-01
: 2 : qmaxQASum : 1.144e-01
: 3 : qmaxQASumR : 8.645e-02
: 4 : bz0 : 7.106e-03
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0504 sec
: Dataset[meanMIPeleR1] : Create results for training
: Dataset[meanMIPeleR1] : Evaluation of BDTRF25_8 on training sample
: Dataset[meanMIPeleR1] : Elapsed time for evaluation of 424 events: 0.003 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR1/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR1/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0528 sec
: Dataset[meanMIPeleR1] : Create results for training
: Dataset[meanMIPeleR1] : Evaluation of BDTRF12_16 on training sample
: Dataset[meanMIPeleR1] : Elapsed time for evaluation of 424 events: 0.00167 sec
: Create variable histograms
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR1/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR1/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.00107 sec
: Dataset[meanMIPeleR1] : Create results for training
: Dataset[meanMIPeleR1] : Evaluation of KNN on training sample
: Dataset[meanMIPeleR1] : Elapsed time for evaluation of 424 events: 0.00624 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR1/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: meanMIPeleR1/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: meanMIPeleR1/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: meanMIPeleR1/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file meanMIPeleR1/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file meanMIPeleR1/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file meanMIPeleR1/weights/TMVARegression_KNN.weights.xml
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[meanMIPeleR1] : Create results for testing
: Dataset[meanMIPeleR1] : Evaluation of BDTRF25_8 on testing sample
: Dataset[meanMIPeleR1] : Elapsed time for evaluation of 424 events: 0.00301 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[meanMIPeleR1] : Create results for testing
: Dataset[meanMIPeleR1] : Evaluation of BDTRF12_16 on testing sample
: Dataset[meanMIPeleR1] : Elapsed time for evaluation of 424 events: 0.00156 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[meanMIPeleR1] : Create results for testing
: Dataset[meanMIPeleR1] : Evaluation of KNN on testing sample
: Dataset[meanMIPeleR1] : Elapsed time for evaluation of 424 events: 0.0066 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00231 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00277 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00186 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00117 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00547 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00537 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: meanMIPeleR1 BDTRF12_16 : -0.00163 0.000968 0.0539 0.00722 | 0.241 0.241
: meanMIPeleR1 BDTRF25_8 : -0.00188 0.000759 0.0548 0.00715 | 0.246 0.246
: meanMIPeleR1 KNN : 0.000113 0.00263 0.0534 0.0133 | 0.223 0.223
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: meanMIPeleR1 BDTRF12_16 : 0.000222 0.000222 0.00162 0.00124 | 0.344 0.342
: meanMIPeleR1 BDTRF25_8 : 5.41e-05 0.000120 0.00260 0.00190 | 0.336 0.363
: meanMIPeleR1 KNN :-0.000360 0.00215 0.0531 0.0130 | 0.167 0.167
: --------------------------------------------------------------------------------------------------
:
Dataset:meanMIPeleR1 : Created tree 'TestTree' with 424 events
:
Dataset:meanMIPeleR1 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [tpcItsMatchA1] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[tpcItsMatchA1] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [tpcItsMatchA1] : Number of events in input trees
: Dataset[tpcItsMatchA1] : Regression requirement: "interactionRate>0"
: Dataset[tpcItsMatchA1] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[tpcItsMatchA1] : Regression -- efficiency : 0.99765
: Dataset[tpcItsMatchA1] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[tpcItsMatchA1] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[tpcItsMatchA1] : such that the effective (weighted) number of events in each class is the same
: Dataset[tpcItsMatchA1] : (and equals the number of events (entries) given for class=0 )
: Dataset[tpcItsMatchA1] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[tpcItsMatchA1] : ... (note that N_j is the sum of TRAINING events
: Dataset[tpcItsMatchA1] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[tpcItsMatchA1] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [tpcItsMatchA1] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: tpcItsMatchA: 0.73917 0.071090 [ 0.49591 0.93753 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 8.845e-01
: 2 : qmaxQASumR : 5.294e-01
: 3 : bz0 : 4.374e-01
: 4 : qmaxQASum : 2.876e-01
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0576 sec
: Dataset[tpcItsMatchA1] : Create results for training
: Dataset[tpcItsMatchA1] : Evaluation of BDTRF25_8 on training sample
: Dataset[tpcItsMatchA1] : Elapsed time for evaluation of 424 events: 0.00534 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA1/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA1/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
: Elapsed time for training with 424 events: 0.132 sec
: Dataset[tpcItsMatchA1] : Create results for training
: Dataset[tpcItsMatchA1] : Evaluation of BDTRF12_16 on training sample
: Dataset[tpcItsMatchA1] : Elapsed time for evaluation of 424 events: 0.00243 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA1/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA1/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000897 sec
: Dataset[tpcItsMatchA1] : Create results for training
: Dataset[tpcItsMatchA1] : Evaluation of KNN on training sample
: Dataset[tpcItsMatchA1] : Elapsed time for evaluation of 424 events: 0.00523 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA1/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: tpcItsMatchA1/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: tpcItsMatchA1/weights/TMVARegression_BDTRF12_16.weights.xml
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: tpcItsMatchA1/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file tpcItsMatchA1/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file tpcItsMatchA1/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file tpcItsMatchA1/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[tpcItsMatchA1] : Create results for testing
: Dataset[tpcItsMatchA1] : Evaluation of BDTRF25_8 on testing sample
: Dataset[tpcItsMatchA1] : Elapsed time for evaluation of 424 events: 0.00301 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[tpcItsMatchA1] : Create results for testing
: Dataset[tpcItsMatchA1] : Evaluation of BDTRF12_16 on testing sample
: Dataset[tpcItsMatchA1] : Elapsed time for evaluation of 424 events: 0.00171 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[tpcItsMatchA1] : Create results for testing
: Dataset[tpcItsMatchA1] : Evaluation of KNN on testing sample
: Dataset[tpcItsMatchA1] : Elapsed time for evaluation of 424 events: 0.00519 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00199 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00197 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00145 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00158 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00755 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00534 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA1 BDTRF12_16 :-0.000590-0.000732 0.0169 0.0102 | 1.279 1.258
: tpcItsMatchA1 BDTRF25_8 :-0.000724 -0.00157 0.0169 0.0102 | 1.249 1.234
: tpcItsMatchA1 KNN : -0.00327 -0.00325 0.0288 0.0178 | 1.032 0.963
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA1 BDTRF12_16 : 1.94e-05-4.92e-06 0.00205 0.00173 | 2.277 2.275
: tpcItsMatchA1 BDTRF25_8 :-0.000385-0.000490 0.00641 0.00562 | 1.810 1.806
: tpcItsMatchA1 KNN : -0.00344 -0.00416 0.0259 0.0175 | 1.225 1.103
: --------------------------------------------------------------------------------------------------
:
Dataset:tpcItsMatchA1 : Created tree 'TestTree' with 424 events
:
Dataset:tpcItsMatchA1 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
DataSetInfo : [resolutionMIP2] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[resolutionMIP2] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [resolutionMIP2] : Number of events in input trees
: Dataset[resolutionMIP2] : Regression requirement: "interactionRate>0"
: Dataset[resolutionMIP2] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[resolutionMIP2] : Regression -- efficiency : 0.99765
: Dataset[resolutionMIP2] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[resolutionMIP2] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[resolutionMIP2] : such that the effective (weighted) number of events in each class is the same
: Dataset[resolutionMIP2] : (and equals the number of events (entries) given for class=0 )
: Dataset[resolutionMIP2] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[resolutionMIP2] : ... (note that N_j is the sum of TRAINING events
: Dataset[resolutionMIP2] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[resolutionMIP2] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [resolutionMIP2] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: resolutionMIP: 0.074520 0.0025165 [ 0.069241 0.10270 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : qmaxQASum : 4.724e-01
: 2 : interactionRate : 3.321e-01
: 3 : qmaxQASumR : 9.835e-02
: 4 : bz0 : 7.688e-02
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0575 sec
: Dataset[resolutionMIP2] : Create results for training
: Dataset[resolutionMIP2] : Evaluation of BDTRF25_8 on training sample
: Dataset[resolutionMIP2] : Elapsed time for evaluation of 424 events: 0.00294 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP2/weights/TMVARegression_BDTRF25_8.weights.xml
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/resolutionMIP2/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0672 sec
: Dataset[resolutionMIP2] : Create results for training
: Dataset[resolutionMIP2] : Evaluation of BDTRF12_16 on training sample
: Dataset[resolutionMIP2] : Elapsed time for evaluation of 424 events: 0.00185 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP2/weights/TMVARegression_BDTRF12_16.weights.xml
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/resolutionMIP2/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.001 sec
: Dataset[resolutionMIP2] : Create results for training
: Dataset[resolutionMIP2] : Evaluation of KNN on training sample
: Dataset[resolutionMIP2] : Elapsed time for evaluation of 424 events: 0.00519 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP2/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: resolutionMIP2/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: resolutionMIP2/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: resolutionMIP2/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file resolutionMIP2/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file resolutionMIP2/weights/TMVARegression_BDTRF12_16.weights.xml
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Weight file resolutionMIP2/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[resolutionMIP2] : Create results for testing
: Dataset[resolutionMIP2] : Evaluation of BDTRF25_8 on testing sample
: Dataset[resolutionMIP2] : Elapsed time for evaluation of 424 events: 0.0036 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[resolutionMIP2] : Create results for testing
: Dataset[resolutionMIP2] : Evaluation of BDTRF12_16 on testing sample
: Dataset[resolutionMIP2] : Elapsed time for evaluation of 424 events: 0.00212 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[resolutionMIP2] : Create results for testing
: Dataset[resolutionMIP2] : Evaluation of KNN on testing sample
: Dataset[resolutionMIP2] : Elapsed time for evaluation of 424 events: 0.0058 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00228 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00283 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00141 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00126 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00616 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00517 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: resolutionMIP2 BDTRF12_16 :-9.90e-05 2.56e-05 0.00173 0.000669 | 1.332 1.316
: resolutionMIP2 BDTRF25_8 :-8.85e-05 2.73e-05 0.00159 0.000669 | 1.327 1.309
: resolutionMIP2 KNN : 2.95e-05 0.000113 0.00200 0.000909 | 0.997 0.969
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: resolutionMIP2 BDTRF12_16 : 2.09e-06 1.47e-06 0.000180 0.000140 | 1.892 1.922
: resolutionMIP2 BDTRF25_8 :-8.07e-06-1.44e-05 0.000397 0.000344 | 1.622 1.683
: resolutionMIP2 KNN : 1.68e-05 9.13e-05 0.00182 0.000889 | 1.000 0.975
: --------------------------------------------------------------------------------------------------
:
Dataset:resolutionMIP2 : Created tree 'TestTree' with 424 events
:
Dataset:resolutionMIP2 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [meanMIPeleR2] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[meanMIPeleR2] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [meanMIPeleR2] : Number of events in input trees
: Dataset[meanMIPeleR2] : Regression requirement: "interactionRate>0"
: Dataset[meanMIPeleR2] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[meanMIPeleR2] : Regression -- efficiency : 0.99765
: Dataset[meanMIPeleR2] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[meanMIPeleR2] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[meanMIPeleR2] : such that the effective (weighted) number of events in each class is the same
: Dataset[meanMIPeleR2] : (and equals the number of events (entries) given for class=0 )
: Dataset[meanMIPeleR2] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[meanMIPeleR2] : ... (note that N_j is the sum of TRAINING events
: Dataset[meanMIPeleR2] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[meanMIPeleR2] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [meanMIPeleR2] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: meanMIPeleR: 1.6959 0.055219 [ 1.6678 2.8173 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 1.422e-01
: 2 : qmaxQASum : 1.144e-01
: 3 : qmaxQASumR : 8.645e-02
: 4 : bz0 : 7.106e-03
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0455 sec
: Dataset[meanMIPeleR2] : Create results for training
: Dataset[meanMIPeleR2] : Evaluation of BDTRF25_8 on training sample
: Dataset[meanMIPeleR2] : Elapsed time for evaluation of 424 events: 0.00313 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR2/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR2/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0443 sec
: Dataset[meanMIPeleR2] : Create results for training
: Dataset[meanMIPeleR2] : Evaluation of BDTRF12_16 on training sample
: Dataset[meanMIPeleR2] : Elapsed time for evaluation of 424 events: 0.00168 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR2/weights/TMVARegression_BDTRF12_16.weights.xml
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/meanMIPeleR2/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000914 sec
: Dataset[meanMIPeleR2] : Create results for training
: Dataset[meanMIPeleR2] : Evaluation of KNN on training sample
: Dataset[meanMIPeleR2] : Elapsed time for evaluation of 424 events: 0.00556 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR2/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: meanMIPeleR2/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: meanMIPeleR2/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: meanMIPeleR2/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file meanMIPeleR2/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file meanMIPeleR2/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file meanMIPeleR2/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[meanMIPeleR2] : Create results for testing
: Dataset[meanMIPeleR2] : Evaluation of BDTRF25_8 on testing sample
: Dataset[meanMIPeleR2] : Elapsed time for evaluation of 424 events: 0.00271 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[meanMIPeleR2] : Create results for testing
: Dataset[meanMIPeleR2] : Evaluation of BDTRF12_16 on testing sample
: Dataset[meanMIPeleR2] : Elapsed time for evaluation of 424 events: 0.00148 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[meanMIPeleR2] : Create results for testing
: Dataset[meanMIPeleR2] : Evaluation of KNN on testing sample
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Dataset[meanMIPeleR2] : Elapsed time for evaluation of 424 events: 0.00561 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00237 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00248 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00147 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0014 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00533 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00539 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: meanMIPeleR2 BDTRF12_16 : -0.00204 0.000600 0.0548 0.00716 | 0.244 0.244
: meanMIPeleR2 BDTRF25_8 : -0.00114 0.000631 0.0412 0.00595 | 0.214 0.216
: meanMIPeleR2 KNN : 0.000113 0.00263 0.0534 0.0133 | 0.223 0.223
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: meanMIPeleR2 BDTRF12_16 :-1.53e-05 1.51e-05 0.00147 0.00105 | 0.354 0.359
: meanMIPeleR2 BDTRF25_8 : 0.000137 0.000255 0.00298 0.00246 | 0.317 0.329
: meanMIPeleR2 KNN :-0.000360 0.00215 0.0531 0.0130 | 0.167 0.167
: --------------------------------------------------------------------------------------------------
:
Dataset:meanMIPeleR2 : Created tree 'TestTree' with 424 events
:
Dataset:meanMIPeleR2 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [tpcItsMatchA2] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[tpcItsMatchA2] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [tpcItsMatchA2] : Number of events in input trees
: Dataset[tpcItsMatchA2] : Regression requirement: "interactionRate>0"
: Dataset[tpcItsMatchA2] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[tpcItsMatchA2] : Regression -- efficiency : 0.99765
: Dataset[tpcItsMatchA2] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[tpcItsMatchA2] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[tpcItsMatchA2] : such that the effective (weighted) number of events in each class is the same
: Dataset[tpcItsMatchA2] : (and equals the number of events (entries) given for class=0 )
: Dataset[tpcItsMatchA2] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[tpcItsMatchA2] : ... (note that N_j is the sum of TRAINING events
: Dataset[tpcItsMatchA2] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[tpcItsMatchA2] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [tpcItsMatchA2] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: tpcItsMatchA: 0.73917 0.071090 [ 0.49591 0.93753 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 8.845e-01
: 2 : qmaxQASumR : 5.294e-01
: 3 : bz0 : 4.374e-01
: 4 : qmaxQASum : 2.876e-01
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0561 sec
: Dataset[tpcItsMatchA2] : Create results for training
: Dataset[tpcItsMatchA2] : Evaluation of BDTRF25_8 on training sample
: Dataset[tpcItsMatchA2] : Elapsed time for evaluation of 424 events: 0.00295 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA2/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA2/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0805 sec
: Dataset[tpcItsMatchA2] : Create results for training
: Dataset[tpcItsMatchA2] : Evaluation of BDTRF12_16 on training sample
: Dataset[tpcItsMatchA2] : Elapsed time for evaluation of 424 events: 0.00213 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA2/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA2/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000678 sec
: Dataset[tpcItsMatchA2] : Create results for training
: Dataset[tpcItsMatchA2] : Evaluation of KNN on training sample
: Dataset[tpcItsMatchA2] : Elapsed time for evaluation of 424 events: 0.00496 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA2/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: tpcItsMatchA2/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: tpcItsMatchA2/weights/TMVARegression_BDTRF12_16.weights.xml
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: tpcItsMatchA2/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file tpcItsMatchA2/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file tpcItsMatchA2/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file tpcItsMatchA2/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[tpcItsMatchA2] : Create results for testing
: Dataset[tpcItsMatchA2] : Evaluation of BDTRF25_8 on testing sample
: Dataset[tpcItsMatchA2] : Elapsed time for evaluation of 424 events: 0.00281 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[tpcItsMatchA2] : Create results for testing
: Dataset[tpcItsMatchA2] : Evaluation of BDTRF12_16 on testing sample
: Dataset[tpcItsMatchA2] : Elapsed time for evaluation of 424 events: 0.00175 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[tpcItsMatchA2] : Create results for testing
: Dataset[tpcItsMatchA2] : Evaluation of KNN on testing sample
: Dataset[tpcItsMatchA2] : Elapsed time for evaluation of 424 events: 0.00572 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00208 sec
: TestRegression (training)
: Calculate regression for all events
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Elapsed time for evaluation of 424 events: 0.00237 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00206 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00159 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00512 sec
: TestRegression (training)
: Calculate regression for all events
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
: Elapsed time for evaluation of 424 events: 0.00705 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA2 BDTRF12_16 :-0.000971 -0.00121 0.0172 0.0102 | 1.255 1.255
: tpcItsMatchA2 BDTRF25_8 :-0.000737 -0.00172 0.0168 0.0104 | 1.180 1.150
: tpcItsMatchA2 KNN : -0.00327 -0.00325 0.0288 0.0178 | 1.032 0.963
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA2 BDTRF12_16 :-8.66e-05-0.000113 0.00259 0.00218 | 2.222 2.210
: tpcItsMatchA2 BDTRF25_8 :-0.000338-0.000568 0.00720 0.00635 | 1.722 1.709
: tpcItsMatchA2 KNN : -0.00344 -0.00416 0.0259 0.0175 | 1.225 1.103
: --------------------------------------------------------------------------------------------------
:
Dataset:tpcItsMatchA2 : Created tree 'TestTree' with 424 events
:
Dataset:tpcItsMatchA2 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
100%, time left: 0 sec
DataSetInfo : [resolutionMIP3] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[resolutionMIP3] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [resolutionMIP3] : Number of events in input trees
: Dataset[resolutionMIP3] : Regression requirement: "interactionRate>0"
: Dataset[resolutionMIP3] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[resolutionMIP3] : Regression -- efficiency : 0.99765
: Dataset[resolutionMIP3] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[resolutionMIP3] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[resolutionMIP3] : such that the effective (weighted) number of events in each class is the same
: Dataset[resolutionMIP3] : (and equals the number of events (entries) given for class=0 )
: Dataset[resolutionMIP3] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[resolutionMIP3] : ... (note that N_j is the sum of TRAINING events
: Dataset[resolutionMIP3] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[resolutionMIP3] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [resolutionMIP3] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: resolutionMIP: 0.074520 0.0025165 [ 0.069241 0.10270 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : qmaxQASum : 4.724e-01
: 2 : interactionRate : 3.321e-01
: 3 : qmaxQASumR : 9.835e-02
: 4 : bz0 : 7.688e-02
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0515 sec
: Dataset[resolutionMIP3] : Create results for training
: Dataset[resolutionMIP3] : Evaluation of BDTRF25_8 on training sample
: Dataset[resolutionMIP3] : Elapsed time for evaluation of 424 events: 0.00424 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP3/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP3/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
: Elapsed time for training with 424 events: 0.052 sec
: Dataset[resolutionMIP3] : Create results for training
: Dataset[resolutionMIP3] : Evaluation of BDTRF12_16 on training sample
: Dataset[resolutionMIP3] : Elapsed time for evaluation of 424 events: 0.00193 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP3/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP3/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.00076 sec
: Dataset[resolutionMIP3] : Create results for training
: Dataset[resolutionMIP3] : Evaluation of KNN on training sample
: Dataset[resolutionMIP3] : Elapsed time for evaluation of 424 events: 0.00559 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP3/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: resolutionMIP3/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: resolutionMIP3/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: resolutionMIP3/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Weight file resolutionMIP3/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file resolutionMIP3/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file resolutionMIP3/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[resolutionMIP3] : Create results for testing
: Dataset[resolutionMIP3] : Evaluation of BDTRF25_8 on testing sample
: Dataset[resolutionMIP3] : Elapsed time for evaluation of 424 events: 0.00336 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[resolutionMIP3] : Create results for testing
: Dataset[resolutionMIP3] : Evaluation of BDTRF12_16 on testing sample
: Dataset[resolutionMIP3] : Elapsed time for evaluation of 424 events: 0.00205 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[resolutionMIP3] : Create results for testing
: Dataset[resolutionMIP3] : Evaluation of KNN on testing sample
: Dataset[resolutionMIP3] : Elapsed time for evaluation of 424 events: 0.00578 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00224 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00242 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00154 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00152 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00535 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00525 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: resolutionMIP3 BDTRF12_16 :-0.000110 2.88e-06 0.00167 0.000677 | 1.355 1.347
: resolutionMIP3 BDTRF25_8 :-8.76e-05 2.43e-05 0.00170 0.000699 | 1.305 1.284
: resolutionMIP3 KNN : 2.95e-05 0.000113 0.00200 0.000909 | 0.997 0.969
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: resolutionMIP3 BDTRF12_16 :-1.02e-06-2.91e-06 0.000196 0.000142 | 1.908 1.934
: resolutionMIP3 BDTRF25_8 : 2.16e-06 2.80e-05 0.000459 0.000403 | 1.553 1.626
: resolutionMIP3 KNN : 1.68e-05 9.13e-05 0.00182 0.000889 | 1.000 0.975
: --------------------------------------------------------------------------------------------------
:
Dataset:resolutionMIP3 : Created tree 'TestTree' with 424 events
:
Dataset:resolutionMIP3 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [meanMIPeleR3] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[meanMIPeleR3] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [meanMIPeleR3] : Number of events in input trees
: Dataset[meanMIPeleR3] : Regression requirement: "interactionRate>0"
: Dataset[meanMIPeleR3] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[meanMIPeleR3] : Regression -- efficiency : 0.99765
: Dataset[meanMIPeleR3] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[meanMIPeleR3] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[meanMIPeleR3] : such that the effective (weighted) number of events in each class is the same
: Dataset[meanMIPeleR3] : (and equals the number of events (entries) given for class=0 )
: Dataset[meanMIPeleR3] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[meanMIPeleR3] : ... (note that N_j is the sum of TRAINING events
: Dataset[meanMIPeleR3] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[meanMIPeleR3] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [meanMIPeleR3] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: meanMIPeleR: 1.6959 0.055219 [ 1.6678 2.8173 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 1.422e-01
: 2 : qmaxQASum : 1.144e-01
: 3 : qmaxQASumR : 8.645e-02
: 4 : bz0 : 7.106e-03
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0563 sec
: Dataset[meanMIPeleR3] : Create results for training
: Dataset[meanMIPeleR3] : Evaluation of BDTRF25_8 on training sample
: Dataset[meanMIPeleR3] : Elapsed time for evaluation of 424 events: 0.00293 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR3/weights/TMVARegression_BDTRF25_8.weights.xml
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/meanMIPeleR3/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0674 sec
: Dataset[meanMIPeleR3] : Create results for training
: Dataset[meanMIPeleR3] : Evaluation of BDTRF12_16 on training sample
: Dataset[meanMIPeleR3] : Elapsed time for evaluation of 424 events: 0.00179 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR3/weights/TMVARegression_BDTRF12_16.weights.xml
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/meanMIPeleR3/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000763 sec
: Dataset[meanMIPeleR3] : Create results for training
: Dataset[meanMIPeleR3] : Evaluation of KNN on training sample
: Dataset[meanMIPeleR3] : Elapsed time for evaluation of 424 events: 0.00517 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR3/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: meanMIPeleR3/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: meanMIPeleR3/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: meanMIPeleR3/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file meanMIPeleR3/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file meanMIPeleR3/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file meanMIPeleR3/weights/TMVARegression_KNN.weights.xml
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[meanMIPeleR3] : Create results for testing
: Dataset[meanMIPeleR3] : Evaluation of BDTRF25_8 on testing sample
: Dataset[meanMIPeleR3] : Elapsed time for evaluation of 424 events: 0.00338 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[meanMIPeleR3] : Create results for testing
: Dataset[meanMIPeleR3] : Evaluation of BDTRF12_16 on testing sample
: Dataset[meanMIPeleR3] : Elapsed time for evaluation of 424 events: 0.00205 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[meanMIPeleR3] : Create results for testing
: Dataset[meanMIPeleR3] : Evaluation of KNN on testing sample
: Dataset[meanMIPeleR3] : Elapsed time for evaluation of 424 events: 0.00617 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00244 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00279 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00125 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00122 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
: Elapsed time for evaluation of 424 events: 0.00524 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00599 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: meanMIPeleR3 BDTRF12_16 : -0.00193 0.000708 0.0548 0.00717 | 0.239 0.239
: meanMIPeleR3 BDTRF25_8 : -0.00190 0.000725 0.0544 0.00723 | 0.238 0.238
: meanMIPeleR3 KNN : 0.000113 0.00263 0.0534 0.0133 | 0.223 0.223
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: meanMIPeleR3 BDTRF12_16 : 1.10e-05 3.68e-05 0.00103 0.000751 | 0.398 0.414
: meanMIPeleR3 BDTRF25_8 : 3.05e-05 7.76e-05 0.00226 0.00187 | 0.313 0.327
: meanMIPeleR3 KNN :-0.000360 0.00215 0.0531 0.0130 | 0.167 0.167
: --------------------------------------------------------------------------------------------------
:
Dataset:meanMIPeleR3 : Created tree 'TestTree' with 424 events
:
Dataset:meanMIPeleR3 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [tpcItsMatchA3] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[tpcItsMatchA3] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [tpcItsMatchA3] : Number of events in input trees
: Dataset[tpcItsMatchA3] : Regression requirement: "interactionRate>0"
: Dataset[tpcItsMatchA3] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[tpcItsMatchA3] : Regression -- efficiency : 0.99765
: Dataset[tpcItsMatchA3] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[tpcItsMatchA3] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[tpcItsMatchA3] : such that the effective (weighted) number of events in each class is the same
: Dataset[tpcItsMatchA3] : (and equals the number of events (entries) given for class=0 )
: Dataset[tpcItsMatchA3] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[tpcItsMatchA3] : ... (note that N_j is the sum of TRAINING events
: Dataset[tpcItsMatchA3] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[tpcItsMatchA3] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [tpcItsMatchA3] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: tpcItsMatchA: 0.73917 0.071090 [ 0.49591 0.93753 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 8.845e-01
: 2 : qmaxQASumR : 5.294e-01
: 3 : bz0 : 4.374e-01
: 4 : qmaxQASum : 2.876e-01
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0618 sec
: Dataset[tpcItsMatchA3] : Create results for training
: Dataset[tpcItsMatchA3] : Evaluation of BDTRF25_8 on training sample
: Dataset[tpcItsMatchA3] : Elapsed time for evaluation of 424 events: 0.00324 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA3/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA3/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
: Elapsed time for training with 424 events: 0.099 sec
: Dataset[tpcItsMatchA3] : Create results for training
: Dataset[tpcItsMatchA3] : Evaluation of BDTRF12_16 on training sample
: Dataset[tpcItsMatchA3] : Elapsed time for evaluation of 424 events: 0.00277 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA3/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA3/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000742 sec
: Dataset[tpcItsMatchA3] : Create results for training
: Dataset[tpcItsMatchA3] : Evaluation of KNN on training sample
: Dataset[tpcItsMatchA3] : Elapsed time for evaluation of 424 events: 0.00484 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA3/weights/TMVARegression_KNN.weights.xml
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: tpcItsMatchA3/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: tpcItsMatchA3/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: tpcItsMatchA3/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file tpcItsMatchA3/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file tpcItsMatchA3/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file tpcItsMatchA3/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[tpcItsMatchA3] : Create results for testing
: Dataset[tpcItsMatchA3] : Evaluation of BDTRF25_8 on testing sample
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
: Dataset[tpcItsMatchA3] : Elapsed time for evaluation of 424 events: 0.00317 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[tpcItsMatchA3] : Create results for testing
: Dataset[tpcItsMatchA3] : Evaluation of BDTRF12_16 on testing sample
: Dataset[tpcItsMatchA3] : Elapsed time for evaluation of 424 events: 0.00198 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[tpcItsMatchA3] : Create results for testing
: Dataset[tpcItsMatchA3] : Evaluation of KNN on testing sample
: Dataset[tpcItsMatchA3] : Elapsed time for evaluation of 424 events: 0.00632 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0028 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00242 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00157 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00169 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00617 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0061 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA3 BDTRF12_16 :-0.000525 -0.00117 0.0166 0.0100 | 1.276 1.229
: tpcItsMatchA3 BDTRF25_8 : -0.00115 -0.00200 0.0163 0.00995 | 1.184 1.160
: tpcItsMatchA3 KNN : -0.00327 -0.00325 0.0288 0.0178 | 1.032 0.963
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA3 BDTRF12_16 : 6.17e-05-3.71e-05 0.00284 0.00229 | 2.172 2.163
: tpcItsMatchA3 BDTRF25_8 :-0.000836 -0.00108 0.00614 0.00539 | 1.837 1.811
: tpcItsMatchA3 KNN : -0.00344 -0.00416 0.0259 0.0175 | 1.225 1.103
: --------------------------------------------------------------------------------------------------
:
Dataset:tpcItsMatchA3 : Created tree 'TestTree' with 424 events
:
Dataset:tpcItsMatchA3 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [resolutionMIP4] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[resolutionMIP4] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [resolutionMIP4] : Number of events in input trees
: Dataset[resolutionMIP4] : Regression requirement: "interactionRate>0"
: Dataset[resolutionMIP4] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[resolutionMIP4] : Regression -- efficiency : 0.99765
: Dataset[resolutionMIP4] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[resolutionMIP4] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[resolutionMIP4] : such that the effective (weighted) number of events in each class is the same
: Dataset[resolutionMIP4] : (and equals the number of events (entries) given for class=0 )
: Dataset[resolutionMIP4] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[resolutionMIP4] : ... (note that N_j is the sum of TRAINING events
: Dataset[resolutionMIP4] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[resolutionMIP4] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [resolutionMIP4] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: resolutionMIP: 0.074520 0.0025165 [ 0.069241 0.10270 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : qmaxQASum : 4.724e-01
: 2 : interactionRate : 3.321e-01
: 3 : qmaxQASumR : 9.835e-02
: 4 : bz0 : 7.688e-02
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0615 sec
: Dataset[resolutionMIP4] : Create results for training
: Dataset[resolutionMIP4] : Evaluation of BDTRF25_8 on training sample
: Dataset[resolutionMIP4] : Elapsed time for evaluation of 424 events: 0.00346 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP4/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP4/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0493 sec
: Dataset[resolutionMIP4] : Create results for training
: Dataset[resolutionMIP4] : Evaluation of BDTRF12_16 on training sample
: Dataset[resolutionMIP4] : Elapsed time for evaluation of 424 events: 0.00202 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP4/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP4/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.00087 sec
: Dataset[resolutionMIP4] : Create results for training
: Dataset[resolutionMIP4] : Evaluation of KNN on training sample
: Dataset[resolutionMIP4] : Elapsed time for evaluation of 424 events: 0.0054 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP4/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: resolutionMIP4/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: resolutionMIP4/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: resolutionMIP4/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file resolutionMIP4/weights/TMVARegression_BDTRF25_8.weights.xml
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Weight file resolutionMIP4/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file resolutionMIP4/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[resolutionMIP4] : Create results for testing
: Dataset[resolutionMIP4] : Evaluation of BDTRF25_8 on testing sample
: Dataset[resolutionMIP4] : Elapsed time for evaluation of 424 events: 0.00351 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[resolutionMIP4] : Create results for testing
: Dataset[resolutionMIP4] : Evaluation of BDTRF12_16 on testing sample
: Dataset[resolutionMIP4] : Elapsed time for evaluation of 424 events: 0.00244 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[resolutionMIP4] : Create results for testing
: Dataset[resolutionMIP4] : Evaluation of KNN on testing sample
: Dataset[resolutionMIP4] : Elapsed time for evaluation of 424 events: 0.00612 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00233 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00298 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00142 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00222 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00525 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00502 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: resolutionMIP4 BDTRF12_16 :-6.36e-05 1.69e-05 0.00131 0.000658 | 1.347 1.345
: resolutionMIP4 BDTRF25_8 :-0.000139-1.47e-05 0.00174 0.000656 | 1.364 1.345
: resolutionMIP4 KNN : 2.95e-05 0.000113 0.00200 0.000909 | 0.997 0.969
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: resolutionMIP4 BDTRF12_16 :-6.48e-06-1.20e-06 0.000219 0.000156 | 1.834 1.875
: resolutionMIP4 BDTRF25_8 :-1.95e-05-6.50e-06 0.000436 0.000385 | 1.657 1.700
: resolutionMIP4 KNN : 1.68e-05 9.13e-05 0.00182 0.000889 | 1.000 0.975
: --------------------------------------------------------------------------------------------------
:
Dataset:resolutionMIP4 : Created tree 'TestTree' with 424 events
:
Dataset:resolutionMIP4 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [meanMIPeleR4] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[meanMIPeleR4] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [meanMIPeleR4] : Number of events in input trees
: Dataset[meanMIPeleR4] : Regression requirement: "interactionRate>0"
: Dataset[meanMIPeleR4] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[meanMIPeleR4] : Regression -- efficiency : 0.99765
: Dataset[meanMIPeleR4] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[meanMIPeleR4] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[meanMIPeleR4] : such that the effective (weighted) number of events in each class is the same
: Dataset[meanMIPeleR4] : (and equals the number of events (entries) given for class=0 )
: Dataset[meanMIPeleR4] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[meanMIPeleR4] : ... (note that N_j is the sum of TRAINING events
: Dataset[meanMIPeleR4] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[meanMIPeleR4] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [meanMIPeleR4] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: meanMIPeleR: 1.6959 0.055219 [ 1.6678 2.8173 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 1.422e-01
: 2 : qmaxQASum : 1.144e-01
: 3 : qmaxQASumR : 8.645e-02
: 4 : bz0 : 7.106e-03
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0543 sec
: Dataset[meanMIPeleR4] : Create results for training
: Dataset[meanMIPeleR4] : Evaluation of BDTRF25_8 on training sample
: Dataset[meanMIPeleR4] : Elapsed time for evaluation of 424 events: 0.00293 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR4/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR4/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
: Elapsed time for training with 424 events: 0.0624 sec
: Dataset[meanMIPeleR4] : Create results for training
: Dataset[meanMIPeleR4] : Evaluation of BDTRF12_16 on training sample
: Dataset[meanMIPeleR4] : Elapsed time for evaluation of 424 events: 0.00189 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR4/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR4/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.00084 sec
: Dataset[meanMIPeleR4] : Create results for training
: Dataset[meanMIPeleR4] : Evaluation of KNN on training sample
: Dataset[meanMIPeleR4] : Elapsed time for evaluation of 424 events: 0.00559 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR4/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: meanMIPeleR4/weights/TMVARegression_BDTRF25_8.weights.xml
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: meanMIPeleR4/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: meanMIPeleR4/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file meanMIPeleR4/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file meanMIPeleR4/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file meanMIPeleR4/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[meanMIPeleR4] : Create results for testing
: Dataset[meanMIPeleR4] : Evaluation of BDTRF25_8 on testing sample
: Dataset[meanMIPeleR4] : Elapsed time for evaluation of 424 events: 0.00331 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[meanMIPeleR4] : Create results for testing
: Dataset[meanMIPeleR4] : Evaluation of BDTRF12_16 on testing sample
: Dataset[meanMIPeleR4] : Elapsed time for evaluation of 424 events: 0.002 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[meanMIPeleR4] : Create results for testing
: Dataset[meanMIPeleR4] : Evaluation of KNN on testing sample
: Dataset[meanMIPeleR4] : Elapsed time for evaluation of 424 events: 0.00675 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
: Elapsed time for evaluation of 424 events: 0.00299 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00347 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00133 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00135 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00579 sec
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00564 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: meanMIPeleR4 BDTRF12_16 : -0.00141 0.000352 0.0527 0.00713 | 0.247 0.247
: meanMIPeleR4 BDTRF25_8 : -0.00195 0.000696 0.0548 0.00723 | 0.227 0.227
: meanMIPeleR4 KNN : 0.000113 0.00263 0.0534 0.0133 | 0.223 0.223
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: meanMIPeleR4 BDTRF12_16 :-6.86e-05-7.63e-05 0.00101 0.000753 | 0.377 0.388
: meanMIPeleR4 BDTRF25_8 : 5.76e-06 0.000148 0.00284 0.00231 | 0.318 0.340
: meanMIPeleR4 KNN :-0.000360 0.00215 0.0531 0.0130 | 0.167 0.167
: --------------------------------------------------------------------------------------------------
:
Dataset:meanMIPeleR4 : Created tree 'TestTree' with 424 events
:
Dataset:meanMIPeleR4 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
DataSetInfo : [tpcItsMatchA4] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[tpcItsMatchA4] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetFactory : [tpcItsMatchA4] : Number of events in input trees
: Dataset[tpcItsMatchA4] : Regression requirement: "interactionRate>0"
: Dataset[tpcItsMatchA4] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[tpcItsMatchA4] : Regression -- efficiency : 0.99765
: Dataset[tpcItsMatchA4] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[tpcItsMatchA4] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[tpcItsMatchA4] : such that the effective (weighted) number of events in each class is the same
: Dataset[tpcItsMatchA4] : (and equals the number of events (entries) given for class=0 )
: Dataset[tpcItsMatchA4] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[tpcItsMatchA4] : ... (note that N_j is the sum of TRAINING events
: Dataset[tpcItsMatchA4] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[tpcItsMatchA4] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [tpcItsMatchA4] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: tpcItsMatchA: 0.73917 0.071090 [ 0.49591 0.93753 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 8.845e-01
: 2 : qmaxQASumR : 5.294e-01
: 3 : bz0 : 4.374e-01
: 4 : qmaxQASum : 2.876e-01
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.049 sec
: Dataset[tpcItsMatchA4] : Create results for training
: Dataset[tpcItsMatchA4] : Evaluation of BDTRF25_8 on training sample
: Dataset[tpcItsMatchA4] : Elapsed time for evaluation of 424 events: 0.00295 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA4/weights/TMVARegression_BDTRF25_8.weights.xml
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/tpcItsMatchA4/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0746 sec
: Dataset[tpcItsMatchA4] : Create results for training
: Dataset[tpcItsMatchA4] : Evaluation of BDTRF12_16 on training sample
: Dataset[tpcItsMatchA4] : Elapsed time for evaluation of 424 events: 0.00217 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA4/weights/TMVARegression_BDTRF12_16.weights.xml
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/tpcItsMatchA4/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000738 sec
: Dataset[tpcItsMatchA4] : Create results for training
: Dataset[tpcItsMatchA4] : Evaluation of KNN on training sample
: Dataset[tpcItsMatchA4] : Elapsed time for evaluation of 424 events: 0.00515 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA4/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: tpcItsMatchA4/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: tpcItsMatchA4/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: tpcItsMatchA4/weights/TMVARegression_KNN.weights.xml
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file tpcItsMatchA4/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file tpcItsMatchA4/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file tpcItsMatchA4/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[tpcItsMatchA4] : Create results for testing
: Dataset[tpcItsMatchA4] : Evaluation of BDTRF25_8 on testing sample
: Dataset[tpcItsMatchA4] : Elapsed time for evaluation of 424 events: 0.00319 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[tpcItsMatchA4] : Create results for testing
: Dataset[tpcItsMatchA4] : Evaluation of BDTRF12_16 on testing sample
: Dataset[tpcItsMatchA4] : Elapsed time for evaluation of 424 events: 0.00191 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[tpcItsMatchA4] : Create results for testing
: Dataset[tpcItsMatchA4] : Evaluation of KNN on testing sample
: Dataset[tpcItsMatchA4] : Elapsed time for evaluation of 424 events: 0.00673 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00273 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00239 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00153 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00211 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00516 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00486 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA4 BDTRF12_16 :-7.12e-05-0.000409 0.0166 0.00976 | 1.281 1.314
: tpcItsMatchA4 BDTRF25_8 : -0.00112 -0.00221 0.0183 0.0105 | 1.164 1.178
: tpcItsMatchA4 KNN : -0.00327 -0.00325 0.0288 0.0178 | 1.032 0.963
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA4 BDTRF12_16 :-1.42e-05-6.43e-05 0.00235 0.00201 | 2.230 2.250
: tpcItsMatchA4 BDTRF25_8 :-0.000922 -0.00141 0.00709 0.00629 | 1.707 1.665
: tpcItsMatchA4 KNN : -0.00344 -0.00416 0.0259 0.0175 | 1.225 1.103
: --------------------------------------------------------------------------------------------------
:
Dataset:tpcItsMatchA4 : Created tree 'TestTree' with 424 events
:
Dataset:tpcItsMatchA4 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [resolutionMIP5] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[resolutionMIP5] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [resolutionMIP5] : Number of events in input trees
: Dataset[resolutionMIP5] : Regression requirement: "interactionRate>0"
: Dataset[resolutionMIP5] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[resolutionMIP5] : Regression -- efficiency : 0.99765
: Dataset[resolutionMIP5] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[resolutionMIP5] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[resolutionMIP5] : such that the effective (weighted) number of events in each class is the same
: Dataset[resolutionMIP5] : (and equals the number of events (entries) given for class=0 )
: Dataset[resolutionMIP5] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[resolutionMIP5] : ... (note that N_j is the sum of TRAINING events
: Dataset[resolutionMIP5] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[resolutionMIP5] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [resolutionMIP5] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: resolutionMIP: 0.074520 0.0025165 [ 0.069241 0.10270 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : qmaxQASum : 4.724e-01
: 2 : interactionRate : 3.321e-01
: 3 : qmaxQASumR : 9.835e-02
: 4 : bz0 : 7.688e-02
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
: Elapsed time for training with 424 events: 0.0552 sec
: Dataset[resolutionMIP5] : Create results for training
: Dataset[resolutionMIP5] : Evaluation of BDTRF25_8 on training sample
: Dataset[resolutionMIP5] : Elapsed time for evaluation of 424 events: 0.00491 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP5/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP5/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
: Elapsed time for training with 424 events: 0.0615 sec
: Dataset[resolutionMIP5] : Create results for training
: Dataset[resolutionMIP5] : Evaluation of BDTRF12_16 on training sample
: Dataset[resolutionMIP5] : Elapsed time for evaluation of 424 events: 0.00238 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP5/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP5/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.00132 sec
: Dataset[resolutionMIP5] : Create results for training
: Dataset[resolutionMIP5] : Evaluation of KNN on training sample
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
: Dataset[resolutionMIP5] : Elapsed time for evaluation of 424 events: 0.00772 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP5/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: resolutionMIP5/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: resolutionMIP5/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: resolutionMIP5/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file resolutionMIP5/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file resolutionMIP5/weights/TMVARegression_BDTRF12_16.weights.xml
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Weight file resolutionMIP5/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[resolutionMIP5] : Create results for testing
: Dataset[resolutionMIP5] : Evaluation of BDTRF25_8 on testing sample
: Dataset[resolutionMIP5] : Elapsed time for evaluation of 424 events: 0.00353 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[resolutionMIP5] : Create results for testing
: Dataset[resolutionMIP5] : Evaluation of BDTRF12_16 on testing sample
: Dataset[resolutionMIP5] : Elapsed time for evaluation of 424 events: 0.00252 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[resolutionMIP5] : Create results for testing
: Dataset[resolutionMIP5] : Evaluation of KNN on testing sample
: Dataset[resolutionMIP5] : Elapsed time for evaluation of 424 events: 0.00849 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00516 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00274 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00227 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00282 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00566 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00541 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: resolutionMIP5 BDTRF12_16 :-9.00e-05-1.83e-06 0.00174 0.000664 | 1.406 1.380
: resolutionMIP5 BDTRF25_8 :-0.000108 5.46e-06 0.00174 0.000690 | 1.326 1.311
: resolutionMIP5 KNN : 2.95e-05 0.000113 0.00200 0.000909 | 0.997 0.969
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: resolutionMIP5 BDTRF12_16 : 5.13e-07 2.81e-06 0.000271 0.000201 | 1.775 1.856
: resolutionMIP5 BDTRF25_8 :-4.49e-06-7.53e-07 0.000444 0.000388 | 1.618 1.698
: resolutionMIP5 KNN : 1.68e-05 9.13e-05 0.00182 0.000889 | 1.000 0.975
: --------------------------------------------------------------------------------------------------
:
Dataset:resolutionMIP5 : Created tree 'TestTree' with 424 events
:
Dataset:resolutionMIP5 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [meanMIPeleR5] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[meanMIPeleR5] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [meanMIPeleR5] : Number of events in input trees
: Dataset[meanMIPeleR5] : Regression requirement: "interactionRate>0"
: Dataset[meanMIPeleR5] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[meanMIPeleR5] : Regression -- efficiency : 0.99765
: Dataset[meanMIPeleR5] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[meanMIPeleR5] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[meanMIPeleR5] : such that the effective (weighted) number of events in each class is the same
: Dataset[meanMIPeleR5] : (and equals the number of events (entries) given for class=0 )
: Dataset[meanMIPeleR5] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[meanMIPeleR5] : ... (note that N_j is the sum of TRAINING events
: Dataset[meanMIPeleR5] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[meanMIPeleR5] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [meanMIPeleR5] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: meanMIPeleR: 1.6959 0.055219 [ 1.6678 2.8173 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 1.422e-01
: 2 : qmaxQASum : 1.144e-01
: 3 : qmaxQASumR : 8.645e-02
: 4 : bz0 : 7.106e-03
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0514 sec
: Dataset[meanMIPeleR5] : Create results for training
: Dataset[meanMIPeleR5] : Evaluation of BDTRF25_8 on training sample
: Dataset[meanMIPeleR5] : Elapsed time for evaluation of 424 events: 0.00355 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR5/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR5/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0664 sec
: Dataset[meanMIPeleR5] : Create results for training
: Dataset[meanMIPeleR5] : Evaluation of BDTRF12_16 on training sample
: Dataset[meanMIPeleR5] : Elapsed time for evaluation of 424 events: 0.00238 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR5/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR5/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.00082 sec
: Dataset[meanMIPeleR5] : Create results for training
: Dataset[meanMIPeleR5] : Evaluation of KNN on training sample
: Dataset[meanMIPeleR5] : Elapsed time for evaluation of 424 events: 0.00576 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR5/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: meanMIPeleR5/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: meanMIPeleR5/weights/TMVARegression_BDTRF12_16.weights.xml
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: meanMIPeleR5/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file meanMIPeleR5/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file meanMIPeleR5/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file meanMIPeleR5/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[meanMIPeleR5] : Create results for testing
: Dataset[meanMIPeleR5] : Evaluation of BDTRF25_8 on testing sample
: Dataset[meanMIPeleR5] : Elapsed time for evaluation of 424 events: 0.00338 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[meanMIPeleR5] : Create results for testing
: Dataset[meanMIPeleR5] : Evaluation of BDTRF12_16 on testing sample
: Dataset[meanMIPeleR5] : Elapsed time for evaluation of 424 events: 0.00216 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[meanMIPeleR5] : Create results for testing
: Dataset[meanMIPeleR5] : Evaluation of KNN on testing sample
: Dataset[meanMIPeleR5] : Elapsed time for evaluation of 424 events: 0.00575 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00257 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00268 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0017 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00146 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00688 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00578 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: meanMIPeleR5 BDTRF12_16 : -0.00207 0.000577 0.0549 0.00723 | 0.247 0.247
: meanMIPeleR5 BDTRF25_8 : -0.00175 0.000877 0.0545 0.00727 | 0.227 0.227
: meanMIPeleR5 KNN : 0.000113 0.00263 0.0534 0.0133 | 0.223 0.223
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: meanMIPeleR5 BDTRF12_16 : 6.65e-06-1.36e-05 0.000872 0.000667 | 0.398 0.400
: meanMIPeleR5 BDTRF25_8 : 9.63e-05 0.000197 0.00314 0.00265 | 0.285 0.295
: meanMIPeleR5 KNN :-0.000360 0.00215 0.0531 0.0130 | 0.167 0.167
: --------------------------------------------------------------------------------------------------
:
Dataset:meanMIPeleR5 : Created tree 'TestTree' with 424 events
:
Dataset:meanMIPeleR5 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
DataSetInfo : [tpcItsMatchA5] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[tpcItsMatchA5] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [tpcItsMatchA5] : Number of events in input trees
: Dataset[tpcItsMatchA5] : Regression requirement: "interactionRate>0"
: Dataset[tpcItsMatchA5] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[tpcItsMatchA5] : Regression -- efficiency : 0.99765
: Dataset[tpcItsMatchA5] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[tpcItsMatchA5] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[tpcItsMatchA5] : such that the effective (weighted) number of events in each class is the same
: Dataset[tpcItsMatchA5] : (and equals the number of events (entries) given for class=0 )
: Dataset[tpcItsMatchA5] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[tpcItsMatchA5] : ... (note that N_j is the sum of TRAINING events
: Dataset[tpcItsMatchA5] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[tpcItsMatchA5] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [tpcItsMatchA5] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: tpcItsMatchA: 0.73917 0.071090 [ 0.49591 0.93753 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 8.845e-01
: 2 : qmaxQASumR : 5.294e-01
: 3 : bz0 : 4.374e-01
: 4 : qmaxQASum : 2.876e-01
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0669 sec
: Dataset[tpcItsMatchA5] : Create results for training
: Dataset[tpcItsMatchA5] : Evaluation of BDTRF25_8 on training sample
: Dataset[tpcItsMatchA5] : Elapsed time for evaluation of 424 events: 0.00339 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA5/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA5/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0788 sec
: Dataset[tpcItsMatchA5] : Create results for training
: Dataset[tpcItsMatchA5] : Evaluation of BDTRF12_16 on training sample
: Dataset[tpcItsMatchA5] : Elapsed time for evaluation of 424 events: 0.00214 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA5/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA5/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.0011 sec
: Dataset[tpcItsMatchA5] : Create results for training
: Dataset[tpcItsMatchA5] : Evaluation of KNN on training sample
: Dataset[tpcItsMatchA5] : Elapsed time for evaluation of 424 events: 0.00592 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA5/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: tpcItsMatchA5/weights/TMVARegression_BDTRF25_8.weights.xml
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: tpcItsMatchA5/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: tpcItsMatchA5/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file tpcItsMatchA5/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file tpcItsMatchA5/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file tpcItsMatchA5/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[tpcItsMatchA5] : Create results for testing
: Dataset[tpcItsMatchA5] : Evaluation of BDTRF25_8 on testing sample
: Dataset[tpcItsMatchA5] : Elapsed time for evaluation of 424 events: 0.00439 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[tpcItsMatchA5] : Create results for testing
: Dataset[tpcItsMatchA5] : Evaluation of BDTRF12_16 on testing sample
: Dataset[tpcItsMatchA5] : Elapsed time for evaluation of 424 events: 0.00279 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[tpcItsMatchA5] : Create results for testing
: Dataset[tpcItsMatchA5] : Evaluation of KNN on testing sample
: Dataset[tpcItsMatchA5] : Elapsed time for evaluation of 424 events: 0.00661 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00317 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00362 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00177 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00155 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00608 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00628 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA5 BDTRF12_16 :-0.000216-0.000664 0.0162 0.00956 | 1.297 1.301
: tpcItsMatchA5 BDTRF25_8 : -0.00117 -0.00215 0.0173 0.00987 | 1.176 1.164
: tpcItsMatchA5 KNN : -0.00327 -0.00325 0.0288 0.0178 | 1.032 0.963
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA5 BDTRF12_16 :-9.25e-05-5.71e-05 0.00294 0.00236 | 2.135 2.153
: tpcItsMatchA5 BDTRF25_8 :-0.000777 -0.00126 0.00630 0.00576 | 1.786 1.752
: tpcItsMatchA5 KNN : -0.00344 -0.00416 0.0259 0.0175 | 1.225 1.103
: --------------------------------------------------------------------------------------------------
:
Dataset:tpcItsMatchA5 : Created tree 'TestTree' with 424 events
:
Dataset:tpcItsMatchA5 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [resolutionMIP6] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[resolutionMIP6] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [resolutionMIP6] : Number of events in input trees
: Dataset[resolutionMIP6] : Regression requirement: "interactionRate>0"
: Dataset[resolutionMIP6] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[resolutionMIP6] : Regression -- efficiency : 0.99765
: Dataset[resolutionMIP6] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[resolutionMIP6] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[resolutionMIP6] : such that the effective (weighted) number of events in each class is the same
: Dataset[resolutionMIP6] : (and equals the number of events (entries) given for class=0 )
: Dataset[resolutionMIP6] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[resolutionMIP6] : ... (note that N_j is the sum of TRAINING events
: Dataset[resolutionMIP6] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[resolutionMIP6] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [resolutionMIP6] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: resolutionMIP: 0.074520 0.0025165 [ 0.069241 0.10270 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : qmaxQASum : 4.724e-01
: 2 : interactionRate : 3.321e-01
: 3 : qmaxQASumR : 9.835e-02
: 4 : bz0 : 7.688e-02
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0667 sec
: Dataset[resolutionMIP6] : Create results for training
: Dataset[resolutionMIP6] : Evaluation of BDTRF25_8 on training sample
: Dataset[resolutionMIP6] : Elapsed time for evaluation of 424 events: 0.00335 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP6/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP6/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0727 sec
: Dataset[resolutionMIP6] : Create results for training
: Dataset[resolutionMIP6] : Evaluation of BDTRF12_16 on training sample
: Dataset[resolutionMIP6] : Elapsed time for evaluation of 424 events: 0.00294 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP6/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP6/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.00152 sec
: Dataset[resolutionMIP6] : Create results for training
: Dataset[resolutionMIP6] : Evaluation of KNN on training sample
: Dataset[resolutionMIP6] : Elapsed time for evaluation of 424 events: 0.00521 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP6/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: resolutionMIP6/weights/TMVARegression_BDTRF25_8.weights.xml
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: resolutionMIP6/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: resolutionMIP6/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file resolutionMIP6/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file resolutionMIP6/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file resolutionMIP6/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[resolutionMIP6] : Create results for testing
: Dataset[resolutionMIP6] : Evaluation of BDTRF25_8 on testing sample
: Dataset[resolutionMIP6] : Elapsed time for evaluation of 424 events: 0.00346 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[resolutionMIP6] : Create results for testing
: Dataset[resolutionMIP6] : Evaluation of BDTRF12_16 on testing sample
: Dataset[resolutionMIP6] : Elapsed time for evaluation of 424 events: 0.00212 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[resolutionMIP6] : Create results for testing
: Dataset[resolutionMIP6] : Evaluation of KNN on testing sample
: Dataset[resolutionMIP6] : Elapsed time for evaluation of 424 events: 0.00588 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00251 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00373 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00159 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00147 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00489 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00466 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: resolutionMIP6 BDTRF12_16 :-0.000108 5.62e-06 0.00170 0.000653 | 1.399 1.385
: resolutionMIP6 BDTRF25_8 :-6.11e-05 5.01e-05 0.00170 0.000686 | 1.320 1.299
: resolutionMIP6 KNN : 2.95e-05 0.000113 0.00200 0.000909 | 0.997 0.969
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: resolutionMIP6 BDTRF12_16 :-8.44e-06-4.99e-06 0.000152 0.000120 | 1.896 1.922
: resolutionMIP6 BDTRF25_8 : 2.70e-06-2.53e-06 0.000419 0.000353 | 1.595 1.694
: resolutionMIP6 KNN : 1.68e-05 9.13e-05 0.00182 0.000889 | 1.000 0.975
: --------------------------------------------------------------------------------------------------
:
Dataset:resolutionMIP6 : Created tree 'TestTree' with 424 events
:
Dataset:resolutionMIP6 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
DataSetInfo : [meanMIPeleR6] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[meanMIPeleR6] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [meanMIPeleR6] : Number of events in input trees
: Dataset[meanMIPeleR6] : Regression requirement: "interactionRate>0"
: Dataset[meanMIPeleR6] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[meanMIPeleR6] : Regression -- efficiency : 0.99765
: Dataset[meanMIPeleR6] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[meanMIPeleR6] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[meanMIPeleR6] : such that the effective (weighted) number of events in each class is the same
: Dataset[meanMIPeleR6] : (and equals the number of events (entries) given for class=0 )
: Dataset[meanMIPeleR6] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[meanMIPeleR6] : ... (note that N_j is the sum of TRAINING events
: Dataset[meanMIPeleR6] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[meanMIPeleR6] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [meanMIPeleR6] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: meanMIPeleR: 1.6959 0.055219 [ 1.6678 2.8173 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 1.422e-01
: 2 : qmaxQASum : 1.144e-01
: 3 : qmaxQASumR : 8.645e-02
: 4 : bz0 : 7.106e-03
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0495 sec
: Dataset[meanMIPeleR6] : Create results for training
: Dataset[meanMIPeleR6] : Evaluation of BDTRF25_8 on training sample
: Dataset[meanMIPeleR6] : Elapsed time for evaluation of 424 events: 0.00298 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR6/weights/TMVARegression_BDTRF25_8.weights.xml
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/meanMIPeleR6/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0545 sec
: Dataset[meanMIPeleR6] : Create results for training
: Dataset[meanMIPeleR6] : Evaluation of BDTRF12_16 on training sample
: Dataset[meanMIPeleR6] : Elapsed time for evaluation of 424 events: 0.00191 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR6/weights/TMVARegression_BDTRF12_16.weights.xml
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/meanMIPeleR6/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000774 sec
: Dataset[meanMIPeleR6] : Create results for training
: Dataset[meanMIPeleR6] : Evaluation of KNN on training sample
: Dataset[meanMIPeleR6] : Elapsed time for evaluation of 424 events: 0.00609 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR6/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: meanMIPeleR6/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: meanMIPeleR6/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: meanMIPeleR6/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file meanMIPeleR6/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file meanMIPeleR6/weights/TMVARegression_BDTRF12_16.weights.xml
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Weight file meanMIPeleR6/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[meanMIPeleR6] : Create results for testing
: Dataset[meanMIPeleR6] : Evaluation of BDTRF25_8 on testing sample
: Dataset[meanMIPeleR6] : Elapsed time for evaluation of 424 events: 0.00356 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[meanMIPeleR6] : Create results for testing
: Dataset[meanMIPeleR6] : Evaluation of BDTRF12_16 on testing sample
: Dataset[meanMIPeleR6] : Elapsed time for evaluation of 424 events: 0.00222 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[meanMIPeleR6] : Create results for testing
: Dataset[meanMIPeleR6] : Evaluation of KNN on testing sample
: Dataset[meanMIPeleR6] : Elapsed time for evaluation of 424 events: 0.00721 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00348 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00268 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00154 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00137 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00513 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00571 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: meanMIPeleR6 BDTRF12_16 : -0.00213 0.000511 0.0549 0.00724 | 0.244 0.244
: meanMIPeleR6 BDTRF25_8 : -0.00172 0.000910 0.0545 0.00718 | 0.243 0.243
: meanMIPeleR6 KNN : 0.000113 0.00263 0.0534 0.0133 | 0.223 0.223
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: meanMIPeleR6 BDTRF12_16 :-3.14e-05-3.32e-05 0.000787 0.000609 | 0.402 0.406
: meanMIPeleR6 BDTRF25_8 : 0.000175 0.000311 0.00293 0.00237 | 0.313 0.332
: meanMIPeleR6 KNN :-0.000360 0.00215 0.0531 0.0130 | 0.167 0.167
: --------------------------------------------------------------------------------------------------
:
Dataset:meanMIPeleR6 : Created tree 'TestTree' with 424 events
:
Dataset:meanMIPeleR6 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [tpcItsMatchA6] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[tpcItsMatchA6] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [tpcItsMatchA6] : Number of events in input trees
: Dataset[tpcItsMatchA6] : Regression requirement: "interactionRate>0"
: Dataset[tpcItsMatchA6] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[tpcItsMatchA6] : Regression -- efficiency : 0.99765
: Dataset[tpcItsMatchA6] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[tpcItsMatchA6] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[tpcItsMatchA6] : such that the effective (weighted) number of events in each class is the same
: Dataset[tpcItsMatchA6] : (and equals the number of events (entries) given for class=0 )
: Dataset[tpcItsMatchA6] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[tpcItsMatchA6] : ... (note that N_j is the sum of TRAINING events
: Dataset[tpcItsMatchA6] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[tpcItsMatchA6] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [tpcItsMatchA6] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: tpcItsMatchA: 0.73917 0.071090 [ 0.49591 0.93753 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 8.845e-01
: 2 : qmaxQASumR : 5.294e-01
: 3 : bz0 : 4.374e-01
: 4 : qmaxQASum : 2.876e-01
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0498 sec
: Dataset[tpcItsMatchA6] : Create results for training
: Dataset[tpcItsMatchA6] : Evaluation of BDTRF25_8 on training sample
: Dataset[tpcItsMatchA6] : Elapsed time for evaluation of 424 events: 0.00325 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA6/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA6/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0738 sec
: Dataset[tpcItsMatchA6] : Create results for training
: Dataset[tpcItsMatchA6] : Evaluation of BDTRF12_16 on training sample
: Dataset[tpcItsMatchA6] : Elapsed time for evaluation of 424 events: 0.00294 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA6/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA6/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000804 sec
: Dataset[tpcItsMatchA6] : Create results for training
: Dataset[tpcItsMatchA6] : Evaluation of KNN on training sample
: Dataset[tpcItsMatchA6] : Elapsed time for evaluation of 424 events: 0.00502 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA6/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: tpcItsMatchA6/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: tpcItsMatchA6/weights/TMVARegression_BDTRF12_16.weights.xml
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: tpcItsMatchA6/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file tpcItsMatchA6/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file tpcItsMatchA6/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file tpcItsMatchA6/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[tpcItsMatchA6] : Create results for testing
: Dataset[tpcItsMatchA6] : Evaluation of BDTRF25_8 on testing sample
: Dataset[tpcItsMatchA6] : Elapsed time for evaluation of 424 events: 0.00321 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[tpcItsMatchA6] : Create results for testing
: Dataset[tpcItsMatchA6] : Evaluation of BDTRF12_16 on testing sample
: Dataset[tpcItsMatchA6] : Elapsed time for evaluation of 424 events: 0.00213 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[tpcItsMatchA6] : Create results for testing
: Dataset[tpcItsMatchA6] : Evaluation of KNN on testing sample
: Dataset[tpcItsMatchA6] : Elapsed time for evaluation of 424 events: 0.00584 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00234 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00308 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00173 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00176 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00533 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00475 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA6 BDTRF12_16 :-0.000414-0.000718 0.0177 0.0103 | 1.252 1.246
: tpcItsMatchA6 BDTRF25_8 : -0.00142 -0.00215 0.0169 0.0103 | 1.188 1.190
: tpcItsMatchA6 KNN : -0.00327 -0.00325 0.0288 0.0178 | 1.032 0.963
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA6 BDTRF12_16 : 6.02e-05-5.68e-05 0.00252 0.00202 | 2.207 2.200
: tpcItsMatchA6 BDTRF25_8 :-0.000674 -0.00105 0.00639 0.00575 | 1.754 1.720
: tpcItsMatchA6 KNN : -0.00344 -0.00416 0.0259 0.0175 | 1.225 1.103
: --------------------------------------------------------------------------------------------------
:
Dataset:tpcItsMatchA6 : Created tree 'TestTree' with 424 events
:
Dataset:tpcItsMatchA6 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
DataSetInfo : [resolutionMIP7] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[resolutionMIP7] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [resolutionMIP7] : Number of events in input trees
: Dataset[resolutionMIP7] : Regression requirement: "interactionRate>0"
: Dataset[resolutionMIP7] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[resolutionMIP7] : Regression -- efficiency : 0.99765
: Dataset[resolutionMIP7] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[resolutionMIP7] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[resolutionMIP7] : such that the effective (weighted) number of events in each class is the same
: Dataset[resolutionMIP7] : (and equals the number of events (entries) given for class=0 )
: Dataset[resolutionMIP7] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[resolutionMIP7] : ... (note that N_j is the sum of TRAINING events
: Dataset[resolutionMIP7] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[resolutionMIP7] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [resolutionMIP7] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: resolutionMIP: 0.074520 0.0025165 [ 0.069241 0.10270 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : qmaxQASum : 4.724e-01
: 2 : interactionRate : 3.321e-01
: 3 : qmaxQASumR : 9.835e-02
: 4 : bz0 : 7.688e-02
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.068 sec
: Dataset[resolutionMIP7] : Create results for training
: Dataset[resolutionMIP7] : Evaluation of BDTRF25_8 on training sample
: Dataset[resolutionMIP7] : Elapsed time for evaluation of 424 events: 0.00465 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP7/weights/TMVARegression_BDTRF25_8.weights.xml
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/resolutionMIP7/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0872 sec
: Dataset[resolutionMIP7] : Create results for training
: Dataset[resolutionMIP7] : Evaluation of BDTRF12_16 on training sample
: Dataset[resolutionMIP7] : Elapsed time for evaluation of 424 events: 0.00333 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP7/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP7/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000811 sec
: Dataset[resolutionMIP7] : Create results for training
: Dataset[resolutionMIP7] : Evaluation of KNN on training sample
: Dataset[resolutionMIP7] : Elapsed time for evaluation of 424 events: 0.00536 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP7/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: resolutionMIP7/weights/TMVARegression_BDTRF25_8.weights.xml
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: resolutionMIP7/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: resolutionMIP7/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file resolutionMIP7/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file resolutionMIP7/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file resolutionMIP7/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[resolutionMIP7] : Create results for testing
: Dataset[resolutionMIP7] : Evaluation of BDTRF25_8 on testing sample
0%, time left: unknown
: Dataset[resolutionMIP7] : Elapsed time for evaluation of 424 events: 0.00395 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[resolutionMIP7] : Create results for testing
: Dataset[resolutionMIP7] : Evaluation of BDTRF12_16 on testing sample
: Dataset[resolutionMIP7] : Elapsed time for evaluation of 424 events: 0.00358 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[resolutionMIP7] : Create results for testing
: Dataset[resolutionMIP7] : Evaluation of KNN on testing sample
: Dataset[resolutionMIP7] : Elapsed time for evaluation of 424 events: 0.00629 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00328 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0046 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00161 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00147 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00612 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0057 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: resolutionMIP7 BDTRF12_16 :-9.35e-05 2.19e-05 0.00177 0.000689 | 1.381 1.370
: resolutionMIP7 BDTRF25_8 :-9.16e-05 2.30e-05 0.00173 0.000677 | 1.350 1.329
: resolutionMIP7 KNN : 2.95e-05 0.000113 0.00200 0.000909 | 0.997 0.969
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: resolutionMIP7 BDTRF12_16 :-5.74e-07-3.12e-06 0.000108 8.52e-05 | 2.039 2.053
: resolutionMIP7 BDTRF25_8 :-4.44e-06-1.56e-05 0.000373 0.000321 | 1.679 1.723
: resolutionMIP7 KNN : 1.68e-05 9.13e-05 0.00182 0.000889 | 1.000 0.975
: --------------------------------------------------------------------------------------------------
:
Dataset:resolutionMIP7 : Created tree 'TestTree' with 424 events
:
Dataset:resolutionMIP7 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [meanMIPeleR7] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[meanMIPeleR7] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [meanMIPeleR7] : Number of events in input trees
: Dataset[meanMIPeleR7] : Regression requirement: "interactionRate>0"
: Dataset[meanMIPeleR7] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[meanMIPeleR7] : Regression -- efficiency : 0.99765
: Dataset[meanMIPeleR7] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[meanMIPeleR7] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[meanMIPeleR7] : such that the effective (weighted) number of events in each class is the same
: Dataset[meanMIPeleR7] : (and equals the number of events (entries) given for class=0 )
: Dataset[meanMIPeleR7] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[meanMIPeleR7] : ... (note that N_j is the sum of TRAINING events
: Dataset[meanMIPeleR7] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[meanMIPeleR7] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [meanMIPeleR7] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: meanMIPeleR: 1.6959 0.055219 [ 1.6678 2.8173 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 1.422e-01
: 2 : qmaxQASum : 1.144e-01
: 3 : qmaxQASumR : 8.645e-02
: 4 : bz0 : 7.106e-03
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0578 sec
: Dataset[meanMIPeleR7] : Create results for training
: Dataset[meanMIPeleR7] : Evaluation of BDTRF25_8 on training sample
: Dataset[meanMIPeleR7] : Elapsed time for evaluation of 424 events: 0.00304 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR7/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR7/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0578 sec
: Dataset[meanMIPeleR7] : Create results for training
: Dataset[meanMIPeleR7] : Evaluation of BDTRF12_16 on training sample
: Dataset[meanMIPeleR7] : Elapsed time for evaluation of 424 events: 0.002 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR7/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR7/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000753 sec
: Dataset[meanMIPeleR7] : Create results for training
: Dataset[meanMIPeleR7] : Evaluation of KNN on training sample
: Dataset[meanMIPeleR7] : Elapsed time for evaluation of 424 events: 0.00521 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR7/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: meanMIPeleR7/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: meanMIPeleR7/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: meanMIPeleR7/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file meanMIPeleR7/weights/TMVARegression_BDTRF25_8.weights.xml
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Weight file meanMIPeleR7/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file meanMIPeleR7/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[meanMIPeleR7] : Create results for testing
: Dataset[meanMIPeleR7] : Evaluation of BDTRF25_8 on testing sample
: Dataset[meanMIPeleR7] : Elapsed time for evaluation of 424 events: 0.0049 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[meanMIPeleR7] : Create results for testing
: Dataset[meanMIPeleR7] : Evaluation of BDTRF12_16 on testing sample
: Dataset[meanMIPeleR7] : Elapsed time for evaluation of 424 events: 0.00201 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[meanMIPeleR7] : Create results for testing
: Dataset[meanMIPeleR7] : Evaluation of KNN on testing sample
: Dataset[meanMIPeleR7] : Elapsed time for evaluation of 424 events: 0.00572 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00297 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00283 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
: Elapsed time for evaluation of 424 events: 0.00177 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0018 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0051 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00576 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: meanMIPeleR7 BDTRF12_16 : -0.00183 0.000818 0.0550 0.00732 | 0.257 0.257
: meanMIPeleR7 BDTRF25_8 : -0.00175 0.000888 0.0547 0.00723 | 0.240 0.240
: meanMIPeleR7 KNN : 0.000113 0.00263 0.0534 0.0133 | 0.223 0.223
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: meanMIPeleR7 BDTRF12_16 : 3.49e-06-3.71e-05 0.00166 0.00120 | 0.330 0.358
: meanMIPeleR7 BDTRF25_8 : 0.000226 0.000216 0.00257 0.00199 | 0.329 0.349
: meanMIPeleR7 KNN :-0.000360 0.00215 0.0531 0.0130 | 0.167 0.167
: --------------------------------------------------------------------------------------------------
:
Dataset:meanMIPeleR7 : Created tree 'TestTree' with 424 events
:
Dataset:meanMIPeleR7 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [tpcItsMatchA7] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[tpcItsMatchA7] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [tpcItsMatchA7] : Number of events in input trees
: Dataset[tpcItsMatchA7] : Regression requirement: "interactionRate>0"
: Dataset[tpcItsMatchA7] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[tpcItsMatchA7] : Regression -- efficiency : 0.99765
: Dataset[tpcItsMatchA7] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[tpcItsMatchA7] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[tpcItsMatchA7] : such that the effective (weighted) number of events in each class is the same
: Dataset[tpcItsMatchA7] : (and equals the number of events (entries) given for class=0 )
: Dataset[tpcItsMatchA7] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[tpcItsMatchA7] : ... (note that N_j is the sum of TRAINING events
: Dataset[tpcItsMatchA7] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[tpcItsMatchA7] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [tpcItsMatchA7] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: tpcItsMatchA: 0.73917 0.071090 [ 0.49591 0.93753 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 8.845e-01
: 2 : qmaxQASumR : 5.294e-01
: 3 : bz0 : 4.374e-01
: 4 : qmaxQASum : 2.876e-01
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0595 sec
: Dataset[tpcItsMatchA7] : Create results for training
: Dataset[tpcItsMatchA7] : Evaluation of BDTRF25_8 on training sample
: Dataset[tpcItsMatchA7] : Elapsed time for evaluation of 424 events: 0.0036 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA7/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA7/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0792 sec
: Dataset[tpcItsMatchA7] : Create results for training
: Dataset[tpcItsMatchA7] : Evaluation of BDTRF12_16 on training sample
: Dataset[tpcItsMatchA7] : Elapsed time for evaluation of 424 events: 0.00214 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA7/weights/TMVARegression_BDTRF12_16.weights.xml
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/tpcItsMatchA7/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.00115 sec
: Dataset[tpcItsMatchA7] : Create results for training
: Dataset[tpcItsMatchA7] : Evaluation of KNN on training sample
: Dataset[tpcItsMatchA7] : Elapsed time for evaluation of 424 events: 0.00571 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA7/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: tpcItsMatchA7/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: tpcItsMatchA7/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: tpcItsMatchA7/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file tpcItsMatchA7/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file tpcItsMatchA7/weights/TMVARegression_BDTRF12_16.weights.xml
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Weight file tpcItsMatchA7/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[tpcItsMatchA7] : Create results for testing
: Dataset[tpcItsMatchA7] : Evaluation of BDTRF25_8 on testing sample
: Dataset[tpcItsMatchA7] : Elapsed time for evaluation of 424 events: 0.00347 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[tpcItsMatchA7] : Create results for testing
: Dataset[tpcItsMatchA7] : Evaluation of BDTRF12_16 on testing sample
: Dataset[tpcItsMatchA7] : Elapsed time for evaluation of 424 events: 0.00233 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[tpcItsMatchA7] : Create results for testing
: Dataset[tpcItsMatchA7] : Evaluation of KNN on testing sample
: Dataset[tpcItsMatchA7] : Elapsed time for evaluation of 424 events: 0.00798 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00343 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0034 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00215 sec
: TestRegression (training)
: Calculate regression for all events
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
: Elapsed time for evaluation of 424 events: 0.00177 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00635 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00596 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA7 BDTRF12_16 : 0.000223-0.000912 0.0185 0.0102 | 1.285 1.304
: tpcItsMatchA7 BDTRF25_8 :-0.000978 -0.00196 0.0167 0.0103 | 1.214 1.215
: tpcItsMatchA7 KNN : -0.00327 -0.00325 0.0288 0.0178 | 1.032 0.963
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA7 BDTRF12_16 : 2.72e-05-1.95e-05 0.00268 0.00212 | 2.183 2.200
: tpcItsMatchA7 BDTRF25_8 : -0.00104 -0.00139 0.00740 0.00667 | 1.727 1.685
: tpcItsMatchA7 KNN : -0.00344 -0.00416 0.0259 0.0175 | 1.225 1.103
: --------------------------------------------------------------------------------------------------
:
Dataset:tpcItsMatchA7 : Created tree 'TestTree' with 424 events
:
Dataset:tpcItsMatchA7 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [resolutionMIP8] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[resolutionMIP8] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [resolutionMIP8] : Number of events in input trees
: Dataset[resolutionMIP8] : Regression requirement: "interactionRate>0"
: Dataset[resolutionMIP8] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[resolutionMIP8] : Regression -- efficiency : 0.99765
: Dataset[resolutionMIP8] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[resolutionMIP8] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[resolutionMIP8] : such that the effective (weighted) number of events in each class is the same
: Dataset[resolutionMIP8] : (and equals the number of events (entries) given for class=0 )
: Dataset[resolutionMIP8] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[resolutionMIP8] : ... (note that N_j is the sum of TRAINING events
: Dataset[resolutionMIP8] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[resolutionMIP8] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [resolutionMIP8] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: resolutionMIP: 0.074520 0.0025165 [ 0.069241 0.10270 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : qmaxQASum : 4.724e-01
: 2 : interactionRate : 3.321e-01
: 3 : qmaxQASumR : 9.835e-02
: 4 : bz0 : 7.688e-02
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
: Elapsed time for training with 424 events: 0.0596 sec
: Dataset[resolutionMIP8] : Create results for training
: Dataset[resolutionMIP8] : Evaluation of BDTRF25_8 on training sample
: Dataset[resolutionMIP8] : Elapsed time for evaluation of 424 events: 0.00343 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP8/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP8/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
: Elapsed time for training with 424 events: 0.056 sec
: Dataset[resolutionMIP8] : Create results for training
: Dataset[resolutionMIP8] : Evaluation of BDTRF12_16 on training sample
: Dataset[resolutionMIP8] : Elapsed time for evaluation of 424 events: 0.00215 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP8/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP8/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000749 sec
: Dataset[resolutionMIP8] : Create results for training
: Dataset[resolutionMIP8] : Evaluation of KNN on training sample
: Dataset[resolutionMIP8] : Elapsed time for evaluation of 424 events: 0.00555 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP8/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: resolutionMIP8/weights/TMVARegression_BDTRF25_8.weights.xml
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: resolutionMIP8/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: resolutionMIP8/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file resolutionMIP8/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file resolutionMIP8/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file resolutionMIP8/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[resolutionMIP8] : Create results for testing
: Dataset[resolutionMIP8] : Evaluation of BDTRF25_8 on testing sample
: Dataset[resolutionMIP8] : Elapsed time for evaluation of 424 events: 0.00341 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[resolutionMIP8] : Create results for testing
: Dataset[resolutionMIP8] : Evaluation of BDTRF12_16 on testing sample
: Dataset[resolutionMIP8] : Elapsed time for evaluation of 424 events: 0.00204 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[resolutionMIP8] : Create results for testing
: Dataset[resolutionMIP8] : Evaluation of KNN on testing sample
: Dataset[resolutionMIP8] : Elapsed time for evaluation of 424 events: 0.00756 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
: Elapsed time for evaluation of 424 events: 0.00313 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00295 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00294 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0021 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00641 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0057 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: resolutionMIP8 BDTRF12_16 :-2.28e-06 1.15e-05 0.00110 0.000578 | 1.348 1.373
: resolutionMIP8 BDTRF25_8 :-0.000111-6.71e-06 0.00157 0.000705 | 1.333 1.311
: resolutionMIP8 KNN : 2.95e-05 0.000113 0.00200 0.000909 | 0.997 0.969
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: resolutionMIP8 BDTRF12_16 : 8.78e-06 8.64e-06 0.000295 0.000225 | 1.731 1.777
: resolutionMIP8 BDTRF25_8 :-2.71e-05-3.97e-05 0.000492 0.000467 | 1.553 1.583
: resolutionMIP8 KNN : 1.68e-05 9.13e-05 0.00182 0.000889 | 1.000 0.975
: --------------------------------------------------------------------------------------------------
:
Dataset:resolutionMIP8 : Created tree 'TestTree' with 424 events
:
Dataset:resolutionMIP8 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [meanMIPeleR8] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[meanMIPeleR8] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [meanMIPeleR8] : Number of events in input trees
: Dataset[meanMIPeleR8] : Regression requirement: "interactionRate>0"
: Dataset[meanMIPeleR8] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[meanMIPeleR8] : Regression -- efficiency : 0.99765
: Dataset[meanMIPeleR8] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[meanMIPeleR8] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[meanMIPeleR8] : such that the effective (weighted) number of events in each class is the same
: Dataset[meanMIPeleR8] : (and equals the number of events (entries) given for class=0 )
: Dataset[meanMIPeleR8] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[meanMIPeleR8] : ... (note that N_j is the sum of TRAINING events
: Dataset[meanMIPeleR8] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[meanMIPeleR8] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [meanMIPeleR8] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: meanMIPeleR: 1.6959 0.055219 [ 1.6678 2.8173 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 1.422e-01
: 2 : qmaxQASum : 1.144e-01
: 3 : qmaxQASumR : 8.645e-02
: 4 : bz0 : 7.106e-03
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0586 sec
: Dataset[meanMIPeleR8] : Create results for training
: Dataset[meanMIPeleR8] : Evaluation of BDTRF25_8 on training sample
: Dataset[meanMIPeleR8] : Elapsed time for evaluation of 424 events: 0.00306 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR8/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR8/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
: Elapsed time for training with 424 events: 0.0562 sec
: Dataset[meanMIPeleR8] : Create results for training
: Dataset[meanMIPeleR8] : Evaluation of BDTRF12_16 on training sample
: Dataset[meanMIPeleR8] : Elapsed time for evaluation of 424 events: 0.00184 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR8/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR8/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000851 sec
: Dataset[meanMIPeleR8] : Create results for training
: Dataset[meanMIPeleR8] : Evaluation of KNN on training sample
: Dataset[meanMIPeleR8] : Elapsed time for evaluation of 424 events: 0.00474 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR8/weights/TMVARegression_KNN.weights.xml
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: meanMIPeleR8/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: meanMIPeleR8/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: meanMIPeleR8/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file meanMIPeleR8/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file meanMIPeleR8/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file meanMIPeleR8/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[meanMIPeleR8] : Create results for testing
: Dataset[meanMIPeleR8] : Evaluation of BDTRF25_8 on testing sample
0%, time left: unknown
: Dataset[meanMIPeleR8] : Elapsed time for evaluation of 424 events: 0.004 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[meanMIPeleR8] : Create results for testing
: Dataset[meanMIPeleR8] : Evaluation of BDTRF12_16 on testing sample
: Dataset[meanMIPeleR8] : Elapsed time for evaluation of 424 events: 0.00197 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[meanMIPeleR8] : Create results for testing
: Dataset[meanMIPeleR8] : Evaluation of KNN on testing sample
: Dataset[meanMIPeleR8] : Elapsed time for evaluation of 424 events: 0.00667 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00328 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00335 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0018 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0015 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0055 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00576 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: meanMIPeleR8 BDTRF12_16 : -0.00195 0.000695 0.0549 0.00716 | 0.237 0.237
: meanMIPeleR8 BDTRF25_8 : -0.00153 0.000807 0.0486 0.00716 | 0.227 0.227
: meanMIPeleR8 KNN : 0.000113 0.00263 0.0534 0.0133 | 0.223 0.223
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: meanMIPeleR8 BDTRF12_16 :-1.54e-05 2.28e-06 0.00128 0.000947 | 0.360 0.380
: meanMIPeleR8 BDTRF25_8 : 0.000107 0.000169 0.00296 0.00247 | 0.331 0.349
: meanMIPeleR8 KNN :-0.000360 0.00215 0.0531 0.0130 | 0.167 0.167
: --------------------------------------------------------------------------------------------------
:
Dataset:meanMIPeleR8 : Created tree 'TestTree' with 424 events
:
Dataset:meanMIPeleR8 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [tpcItsMatchA8] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[tpcItsMatchA8] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [tpcItsMatchA8] : Number of events in input trees
: Dataset[tpcItsMatchA8] : Regression requirement: "interactionRate>0"
: Dataset[tpcItsMatchA8] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[tpcItsMatchA8] : Regression -- efficiency : 0.99765
: Dataset[tpcItsMatchA8] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[tpcItsMatchA8] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[tpcItsMatchA8] : such that the effective (weighted) number of events in each class is the same
: Dataset[tpcItsMatchA8] : (and equals the number of events (entries) given for class=0 )
: Dataset[tpcItsMatchA8] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[tpcItsMatchA8] : ... (note that N_j is the sum of TRAINING events
: Dataset[tpcItsMatchA8] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[tpcItsMatchA8] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [tpcItsMatchA8] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: tpcItsMatchA: 0.73917 0.071090 [ 0.49591 0.93753 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 8.845e-01
: 2 : qmaxQASumR : 5.294e-01
: 3 : bz0 : 4.374e-01
: 4 : qmaxQASum : 2.876e-01
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0624 sec
: Dataset[tpcItsMatchA8] : Create results for training
: Dataset[tpcItsMatchA8] : Evaluation of BDTRF25_8 on training sample
: Dataset[tpcItsMatchA8] : Elapsed time for evaluation of 424 events: 0.0042 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA8/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA8/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0817 sec
: Dataset[tpcItsMatchA8] : Create results for training
: Dataset[tpcItsMatchA8] : Evaluation of BDTRF12_16 on training sample
: Dataset[tpcItsMatchA8] : Elapsed time for evaluation of 424 events: 0.00279 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA8/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA8/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.0013 sec
: Dataset[tpcItsMatchA8] : Create results for training
: Dataset[tpcItsMatchA8] : Evaluation of KNN on training sample
: Dataset[tpcItsMatchA8] : Elapsed time for evaluation of 424 events: 0.00583 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA8/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: tpcItsMatchA8/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: tpcItsMatchA8/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: tpcItsMatchA8/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file tpcItsMatchA8/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file tpcItsMatchA8/weights/TMVARegression_BDTRF12_16.weights.xml
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Weight file tpcItsMatchA8/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[tpcItsMatchA8] : Create results for testing
: Dataset[tpcItsMatchA8] : Evaluation of BDTRF25_8 on testing sample
: Dataset[tpcItsMatchA8] : Elapsed time for evaluation of 424 events: 0.00437 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[tpcItsMatchA8] : Create results for testing
: Dataset[tpcItsMatchA8] : Evaluation of BDTRF12_16 on testing sample
: Dataset[tpcItsMatchA8] : Elapsed time for evaluation of 424 events: 0.0022 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[tpcItsMatchA8] : Create results for testing
: Dataset[tpcItsMatchA8] : Evaluation of KNN on testing sample
: Dataset[tpcItsMatchA8] : Elapsed time for evaluation of 424 events: 0.00583 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0033 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00296 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00192 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00163 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0056 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00683 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA8 BDTRF12_16 : 0.000538-0.000327 0.0181 0.0103 | 1.219 1.218
: tpcItsMatchA8 BDTRF25_8 :-0.000691 -0.00137 0.0172 0.0103 | 1.184 1.191
: tpcItsMatchA8 KNN : -0.00327 -0.00325 0.0288 0.0178 | 1.032 0.963
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA8 BDTRF12_16 :-2.77e-05-4.22e-05 0.00246 0.00200 | 2.208 2.234
: tpcItsMatchA8 BDTRF25_8 :-0.000306-0.000426 0.00634 0.00584 | 1.780 1.789
: tpcItsMatchA8 KNN : -0.00344 -0.00416 0.0259 0.0175 | 1.225 1.103
: --------------------------------------------------------------------------------------------------
:
Dataset:tpcItsMatchA8 : Created tree 'TestTree' with 424 events
:
Dataset:tpcItsMatchA8 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [resolutionMIP9] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[resolutionMIP9] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [resolutionMIP9] : Number of events in input trees
: Dataset[resolutionMIP9] : Regression requirement: "interactionRate>0"
: Dataset[resolutionMIP9] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[resolutionMIP9] : Regression -- efficiency : 0.99765
: Dataset[resolutionMIP9] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[resolutionMIP9] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[resolutionMIP9] : such that the effective (weighted) number of events in each class is the same
: Dataset[resolutionMIP9] : (and equals the number of events (entries) given for class=0 )
: Dataset[resolutionMIP9] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[resolutionMIP9] : ... (note that N_j is the sum of TRAINING events
: Dataset[resolutionMIP9] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[resolutionMIP9] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [resolutionMIP9] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: resolutionMIP: 0.074520 0.0025165 [ 0.069241 0.10270 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : qmaxQASum : 4.724e-01
: 2 : interactionRate : 3.321e-01
: 3 : qmaxQASumR : 9.835e-02
: 4 : bz0 : 7.688e-02
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0642 sec
: Dataset[resolutionMIP9] : Create results for training
: Dataset[resolutionMIP9] : Evaluation of BDTRF25_8 on training sample
: Dataset[resolutionMIP9] : Elapsed time for evaluation of 424 events: 0.00571 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP9/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP9/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0629 sec
: Dataset[resolutionMIP9] : Create results for training
: Dataset[resolutionMIP9] : Evaluation of BDTRF12_16 on training sample
: Dataset[resolutionMIP9] : Elapsed time for evaluation of 424 events: 0.00261 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP9/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/resolutionMIP9/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.00139 sec
: Dataset[resolutionMIP9] : Create results for training
: Dataset[resolutionMIP9] : Evaluation of KNN on training sample
: Dataset[resolutionMIP9] : Elapsed time for evaluation of 424 events: 0.00527 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: resolutionMIP9/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: resolutionMIP9/weights/TMVARegression_BDTRF25_8.weights.xml
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: Reading weight file: resolutionMIP9/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: resolutionMIP9/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file resolutionMIP9/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file resolutionMIP9/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file resolutionMIP9/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[resolutionMIP9] : Create results for testing
: Dataset[resolutionMIP9] : Evaluation of BDTRF25_8 on testing sample
: Dataset[resolutionMIP9] : Elapsed time for evaluation of 424 events: 0.00461 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[resolutionMIP9] : Create results for testing
: Dataset[resolutionMIP9] : Evaluation of BDTRF12_16 on testing sample
: Dataset[resolutionMIP9] : Elapsed time for evaluation of 424 events: 0.00387 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[resolutionMIP9] : Create results for testing
: Dataset[resolutionMIP9] : Evaluation of KNN on testing sample
: Dataset[resolutionMIP9] : Elapsed time for evaluation of 424 events: 0.00807 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00397 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00401 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00159 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00165 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00791 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00541 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: resolutionMIP: 0.074494 0.0026699 [ 0.069357 0.10280 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: resolutionMIP9 BDTRF12_16 :-8.04e-05-4.81e-06 0.00136 0.000621 | 1.400 1.395
: resolutionMIP9 BDTRF25_8 :-6.75e-05 4.09e-05 0.00166 0.000681 | 1.361 1.340
: resolutionMIP9 KNN : 2.95e-05 0.000113 0.00200 0.000909 | 0.997 0.969
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: resolutionMIP9 BDTRF12_16 :-8.88e-07 1.55e-06 0.000228 0.000166 | 1.811 1.881
: resolutionMIP9 BDTRF25_8 : 9.55e-06 1.16e-05 0.000404 0.000351 | 1.616 1.684
: resolutionMIP9 KNN : 1.68e-05 9.13e-05 0.00182 0.000889 | 1.000 0.975
: --------------------------------------------------------------------------------------------------
:
Dataset:resolutionMIP9 : Created tree 'TestTree' with 424 events
:
Dataset:resolutionMIP9 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [meanMIPeleR9] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[meanMIPeleR9] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [meanMIPeleR9] : Number of events in input trees
: Dataset[meanMIPeleR9] : Regression requirement: "interactionRate>0"
: Dataset[meanMIPeleR9] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[meanMIPeleR9] : Regression -- efficiency : 0.99765
: Dataset[meanMIPeleR9] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[meanMIPeleR9] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[meanMIPeleR9] : such that the effective (weighted) number of events in each class is the same
: Dataset[meanMIPeleR9] : (and equals the number of events (entries) given for class=0 )
: Dataset[meanMIPeleR9] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[meanMIPeleR9] : ... (note that N_j is the sum of TRAINING events
: Dataset[meanMIPeleR9] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[meanMIPeleR9] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [meanMIPeleR9] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: meanMIPeleR: 1.6959 0.055219 [ 1.6678 2.8173 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 1.422e-01
: 2 : qmaxQASum : 1.144e-01
: 3 : qmaxQASumR : 8.645e-02
: 4 : bz0 : 7.106e-03
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0568 sec
: Dataset[meanMIPeleR9] : Create results for training
: Dataset[meanMIPeleR9] : Evaluation of BDTRF25_8 on training sample
: Dataset[meanMIPeleR9] : Elapsed time for evaluation of 424 events: 0.0034 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR9/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR9/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
33%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0722 sec
: Dataset[meanMIPeleR9] : Create results for training
: Dataset[meanMIPeleR9] : Evaluation of BDTRF12_16 on training sample
: Dataset[meanMIPeleR9] : Elapsed time for evaluation of 424 events: 0.00226 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR9/weights/TMVARegression_BDTRF12_16.weights.xml
: TMVA_RegressionOutput.root:/meanMIPeleR9/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000906 sec
: Dataset[meanMIPeleR9] : Create results for training
: Dataset[meanMIPeleR9] : Evaluation of KNN on training sample
: Dataset[meanMIPeleR9] : Elapsed time for evaluation of 424 events: 0.00617 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: meanMIPeleR9/weights/TMVARegression_KNN.weights.xml
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: meanMIPeleR9/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: meanMIPeleR9/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: meanMIPeleR9/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file meanMIPeleR9/weights/TMVARegression_BDTRF25_8.weights.xml
Weight file meanMIPeleR9/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file meanMIPeleR9/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[meanMIPeleR9] : Create results for testing
: Dataset[meanMIPeleR9] : Evaluation of BDTRF25_8 on testing sample
: Dataset[meanMIPeleR9] : Elapsed time for evaluation of 424 events: 0.00418 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[meanMIPeleR9] : Create results for testing
: Dataset[meanMIPeleR9] : Evaluation of BDTRF12_16 on testing sample
: Dataset[meanMIPeleR9] : Elapsed time for evaluation of 424 events: 0.00219 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[meanMIPeleR9] : Create results for testing
: Dataset[meanMIPeleR9] : Evaluation of KNN on testing sample
: Dataset[meanMIPeleR9] : Elapsed time for evaluation of 424 events: 0.00722 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00407 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00333 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0028 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00264 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00701 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00508 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: meanMIPeleR: 1.6943 0.055662 [ 1.6123 2.8208 ]
: ----------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: meanMIPeleR9 BDTRF12_16 : -0.00191 0.000733 0.0549 0.00716 | 0.233 0.233
: meanMIPeleR9 BDTRF25_8 : -0.00205 0.000574 0.0545 0.00715 | 0.259 0.259
: meanMIPeleR9 KNN : 0.000113 0.00263 0.0534 0.0133 | 0.223 0.223
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: meanMIPeleR9 BDTRF12_16 : 2.46e-05-6.09e-06 0.000825 0.000625 | 0.393 0.399
: meanMIPeleR9 BDTRF25_8 :-6.79e-05 4.33e-05 0.00282 0.00239 | 0.323 0.339
: meanMIPeleR9 KNN :-0.000360 0.00215 0.0531 0.0130 | 0.167 0.167
: --------------------------------------------------------------------------------------------------
:
Dataset:meanMIPeleR9 : Created tree 'TestTree' with 424 events
:
Dataset:meanMIPeleR9 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
DataSetInfo : [tpcItsMatchA9] : Added class "Regression"
: Add Tree MVAInput of type Regression with 851 events
: Dataset[tpcItsMatchA9] : Class index : 0 name : Regression
Booking method BDTRF25_8 9 !H:!V:NTrees=25:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=8
Factory : Booking method: BDTRF25_8
:
DataSetFactory : [tpcItsMatchA9] : Number of events in input trees
: Dataset[tpcItsMatchA9] : Regression requirement: "interactionRate>0"
: Dataset[tpcItsMatchA9] : Regression -- number of events passed: 849 / sum of weights: 849
: Dataset[tpcItsMatchA9] : Regression -- efficiency : 0.99765
: Dataset[tpcItsMatchA9] : you have opted for interpreting the requested number of training/testing events
: to be the number of events AFTER your preselection cuts
:
: Dataset[tpcItsMatchA9] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[tpcItsMatchA9] : such that the effective (weighted) number of events in each class is the same
: Dataset[tpcItsMatchA9] : (and equals the number of events (entries) given for class=0 )
: Dataset[tpcItsMatchA9] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[tpcItsMatchA9] : ... (note that N_j is the sum of TRAINING events
: Dataset[tpcItsMatchA9] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 424
: Regression -- testing events : 424
: Regression -- training and testing events: 848
: Dataset[tpcItsMatchA9] : Regression -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.99765
:
: Randomised trees use no pruning
Booking method BDTRF12_16 9 !H:!V:NTrees=12:Shrinkage=0.1:UseRandomisedTrees:nCuts=20:MaxDepth=16
Factory : Booking method: BDTRF12_16
:
: Randomised trees use no pruning
Booking method KNN 6 nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim
Factory : Booking method: KNN
:
Factory : Train all methods
Factory : [tpcItsMatchA9] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'interactionRate' <---> Output : variable 'interactionRate'
: Input : variable 'bz0' <---> Output : variable 'bz0'
: Input : variable 'qmaxQASum' <---> Output : variable 'qmaxQASum'
: Input : variable 'qmaxQASumR' <---> Output : variable 'qmaxQASumR'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.6328e+05 76311. [ 135.88 7.5918e+05 ]
: bz0: -0.46528 0.15511 [ -0.50000 0.50010 ]
: qmaxQASum: 39.380 2.7430 [ 32.729 43.624 ]
: qmaxQASumR: 0.95412 0.020345 [ 0.85734 0.97737 ]
: tpcItsMatchA: 0.73917 0.071090 [ 0.49591 0.93753 ]
: ----------------------------------------------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------------------------
: Rank : Variable : |Correlation with target|
: -------------------------------------------------------
: 1 : interactionRate : 8.845e-01
: 2 : qmaxQASumR : 5.294e-01
: 3 : bz0 : 4.374e-01
: 4 : qmaxQASum : 2.876e-01
: -------------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------------------
: Rank : Variable : Mutual information
: ------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ------------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------------------
: Rank : Variable : Correlation Ratio
: -----------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: -----------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ---------------------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ---------------------------------------------------
: 1 : interactionRate : -1.000e+00
: 2 : bz0 : -1.000e+00
: 3 : qmaxQASum : -1.000e+00
: 4 : qmaxQASumR : -1.000e+00
: ---------------------------------------------------
Factory : Train method: BDTRF25_8 for Regression
:
: Regression Loss Function: Huber
: Training 25 Decision Trees ... patience please
4%, time left: unknown
12%, time left: 0 sec
20%, time left: 0 sec
24%, time left: 0 sec
32%, time left: 0 sec
36%, time left: 0 sec
44%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0535 sec
: Dataset[tpcItsMatchA9] : Create results for training
: Dataset[tpcItsMatchA9] : Evaluation of BDTRF25_8 on training sample
: Dataset[tpcItsMatchA9] : Elapsed time for evaluation of 424 events: 0.00475 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA9/weights/TMVARegression_BDTRF25_8.weights.xml
: TMVA_RegressionOutput.root:/tpcItsMatchA9/Method_BDTRF25_8/BDTRF25_8
Factory : Training finished
:
Factory : Train method: BDTRF12_16 for Regression
:
: Regression Loss Function: Huber
: Training 12 Decision Trees ... patience please
48%, time left: 0 sec
56%, time left: 0 sec
64%, time left: 0 sec
68%, time left: 0 sec
76%, time left: 0 sec
80%, time left: 0 sec
88%, time left: 0 sec
92%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
8%, time left: unknown
16%, time left: 0 sec
25%, time left: 0 sec
: Elapsed time for training with 424 events: 0.0801 sec
: Dataset[tpcItsMatchA9] : Create results for training
: Dataset[tpcItsMatchA9] : Evaluation of BDTRF12_16 on training sample
: Dataset[tpcItsMatchA9] : Elapsed time for evaluation of 424 events: 0.00311 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA9/weights/TMVARegression_BDTRF12_16.weights.xml
33%, time left: 0 sec
41%, time left: 0 sec
50%, time left: 0 sec
58%, time left: 0 sec
66%, time left: 0 sec
75%, time left: 0 sec
83%, time left: 0 sec
91%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
: TMVA_RegressionOutput.root:/tpcItsMatchA9/Method_BDTRF12_16/BDTRF12_16
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 424 events
: Number of signal events 424
: Number of background events 0
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Elapsed time for training with 424 events: 0.000983 sec
: Dataset[tpcItsMatchA9] : Create results for training
: Dataset[tpcItsMatchA9] : Evaluation of KNN on training sample
: Dataset[tpcItsMatchA9] : Elapsed time for evaluation of 424 events: 0.00526 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: tpcItsMatchA9/weights/TMVARegression_KNN.weights.xml
Factory : Training finished
:
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: tpcItsMatchA9/weights/TMVARegression_BDTRF25_8.weights.xml
: Reading weight file: tpcItsMatchA9/weights/TMVARegression_BDTRF12_16.weights.xml
: Reading weight file: tpcItsMatchA9/weights/TMVARegression_KNN.weights.xml
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
Weight file tpcItsMatchA9/weights/TMVARegression_BDTRF25_8.weights.xml
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
Weight file tpcItsMatchA9/weights/TMVARegression_BDTRF12_16.weights.xml
Weight file tpcItsMatchA9/weights/TMVARegression_KNN.weights.xml
Factory : Test all methods
Factory : Test method: BDTRF25_8 for Regression performance
:
: Dataset[tpcItsMatchA9] : Create results for testing
: Dataset[tpcItsMatchA9] : Evaluation of BDTRF25_8 on testing sample
: Dataset[tpcItsMatchA9] : Elapsed time for evaluation of 424 events: 0.00433 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTRF12_16 for Regression performance
:
: Dataset[tpcItsMatchA9] : Create results for testing
: Dataset[tpcItsMatchA9] : Evaluation of BDTRF12_16 on testing sample
: Dataset[tpcItsMatchA9] : Elapsed time for evaluation of 424 events: 0.00274 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[tpcItsMatchA9] : Create results for testing
: Dataset[tpcItsMatchA9] : Evaluation of KNN on testing sample
: Dataset[tpcItsMatchA9] : Elapsed time for evaluation of 424 events: 0.00795 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Evaluate all methods
: Evaluate regression method: BDTRF25_8
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00352 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.0034 sec
TFHandler_BDTRF25_8 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
6%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
37%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
87%, time left: 0 sec
94%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
: Evaluate regression method: BDTRF12_16
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00194 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00269 sec
TFHandler_BDTRF12_16 : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00581 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 424 events: 0.00534 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: ----------------------------------------------------------------------------------------------
: interactionRate: 1.7012e+05 80262. [ 135.79 1.0095e+06 ]
: bz0: -0.46882 0.15241 [ -0.50000 0.50009 ]
: qmaxQASum: 39.514 2.6575 [ 33.386 43.396 ]
: qmaxQASumR: 0.95613 0.015563 [ 0.86233 0.97128 ]
: tpcItsMatchA: 0.73222 0.067272 [ 0.43263 0.93667 ]
: ----------------------------------------------------------------------------------------------
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
0%, time left: unknown
60%, time left: 0 sec
100%, time left: 0 sec
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA9 BDTRF12_16 :-0.000281-0.000505 0.0169 0.0104 | 1.288 1.272
: tpcItsMatchA9 BDTRF25_8 : -0.00127 -0.00230 0.0167 0.00986 | 1.223 1.216
: tpcItsMatchA9 KNN : -0.00327 -0.00325 0.0288 0.0178 | 1.032 0.963
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: tpcItsMatchA9 BDTRF12_16 : 5.44e-05 1.02e-05 0.00228 0.00201 | 2.271 2.260
: tpcItsMatchA9 BDTRF25_8 : -0.00116 -0.00170 0.00717 0.00628 | 1.712 1.693
: tpcItsMatchA9 KNN : -0.00344 -0.00416 0.0259 0.0175 | 1.225 1.103
: --------------------------------------------------------------------------------------------------
:
Dataset:tpcItsMatchA9 : Created tree 'TestTree' with 424 events
:
Dataset:tpcItsMatchA9 : Created tree 'TrainTree' with 424 events
:
Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
In [8]:
/// Load regression and register it for later usage
///void loadMVAReaders(){
AliNDFunctionInterface::LoadMVAReader(0,"TMVA_RegressionOutput.root","BDTRF25_8","resolutionMIP0");
AliNDFunctionInterface::LoadMVAReader(1,"TMVA_RegressionOutput.root","BDTRF12_16","resolutionMIP0");
AliNDFunctionInterface::LoadMVAReader(2,"TMVA_RegressionOutput.root","KNN","resolutionMIP0");
//}
/// Load array of regression -used later in the array regression evaluation (mean, median, rms)
///-------------------------------
//void loadMVAReadersBootstrap() {
AliNDFunctionInterface::LoadMVAReaderArray(0,"TMVA_RegressionOutput.root","BDTRF12_16",".*resolutionMIP");
AliNDFunctionInterface::LoadMVAReaderArray(1,"TMVA_RegressionOutput.root","BDTRF25_8",".*resolutionMIP");
AliNDFunctionInterface::LoadMVAReaderArray(2,"TMVA_RegressionOutput.root","KNN",".*resolutionMIP");
///}
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
resolutionMIP0
resolutionMIP0/BDTRF12_16
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
resolutionMIP1
resolutionMIP1/BDTRF12_16
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
resolutionMIP2
resolutionMIP2/BDTRF12_16
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
resolutionMIP3
resolutionMIP3/BDTRF12_16
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
resolutionMIP4
resolutionMIP4/BDTRF12_16
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
resolutionMIP5
resolutionMIP5/BDTRF12_16
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
resolutionMIP6
resolutionMIP6/BDTRF12_16
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
resolutionMIP7
resolutionMIP7/BDTRF12_16
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
resolutionMIP8
resolutionMIP8/BDTRF12_16
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
resolutionMIP9
resolutionMIP9/BDTRF12_16
: Booking "BDTRF12_16" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF12_16" of type: "BDT"
resolutionMIP0
resolutionMIP0/BDTRF25_8
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
resolutionMIP1
resolutionMIP1/BDTRF25_8
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
resolutionMIP2
resolutionMIP2/BDTRF25_8
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
resolutionMIP3
resolutionMIP3/BDTRF25_8
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
resolutionMIP4
resolutionMIP4/BDTRF25_8
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
resolutionMIP5
resolutionMIP5/BDTRF25_8
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
resolutionMIP6
resolutionMIP6/BDTRF25_8
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
resolutionMIP7
resolutionMIP7/BDTRF25_8
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
resolutionMIP8
resolutionMIP8/BDTRF25_8
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
resolutionMIP9
resolutionMIP9/BDTRF25_8
: Booking "BDTRF25_8" of type "BDT" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Booked classifier "BDTRF25_8" of type: "BDT"
resolutionMIP0
resolutionMIP0/KNN
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
resolutionMIP1
resolutionMIP1/KNN
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
resolutionMIP2
resolutionMIP2/KNN
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
resolutionMIP3
resolutionMIP3/KNN
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
resolutionMIP4
resolutionMIP4/KNN
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
resolutionMIP5
resolutionMIP5/KNN
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
resolutionMIP6
resolutionMIP6/KNN
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
resolutionMIP7
resolutionMIP7/KNN
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
resolutionMIP8
resolutionMIP8/KNN
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
resolutionMIP9
resolutionMIP9/KNN
: Booking "KNN" of type "KNN" from weights.xml.
: Reading weight file: weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Regression"
: Creating kd-tree with 424 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN : Optimizing tree for 4 variables with 424 values
: <Fill> Class 1 has 424 events
: Booked classifier "KNN" of type: "KNN"
In [9]:
tree->Draw("AliNDFunctionInterface::EvalMVAStat(0,1,interactionRate, bz0,qmaxQASum,qmaxQASumR):AliNDFunctionInterface::EvalMVA(0,interactionRate, bz0,qmaxQASum,qmaxQASumR):resolutionMIP","run==QA.EVS.run","colz");
canvasDraw->Draw("colz");
In [10]:
tree->Draw("AliNDFunctionInterface::EvalMVAStat(0,1,interactionRate, bz0,qmaxQASum,qmaxQASumR):resolutionMIP:run","run==QA.EVS.run","colz");
canvasDraw->Draw("colz");
In [11]:
gStyle->SetOptFit(1);
tree->Draw("AliNDFunctionInterface::EvalMVAStat(0,2,interactionRate, bz0,qmaxQASum,qmaxQASumR)-AliNDFunctionInterface::EvalMVAStat(1,2,interactionRate, bz0,qmaxQASum,qmaxQASumR)>>hisRMSD(100,-0.001,0.001)","run==QA.EVS.run","");
tree->GetHistogram()->Fit("gaus");
canvasDraw->Draw("colz");
FCN=91.4802 FROM MIGRAD STATUS=CONVERGED 82 CALLS 83 TOTAL
EDM=1.59774e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 6.32122e+01 3.28892e+00 1.08115e-02 -3.31802e-05
2 Mean -5.51887e-06 3.92615e-06 1.67265e-08 -1.48960e+02
3 Sigma 9.58279e-05 3.69495e-06 3.48465e-05 3.12972e-02
In [ ]:
Content source: miranov25/AliRoot
Similar notebooks: