Train on 560 samples, validate on 140 samples
Epoch 1/100
544/560 [============================>.] - ETA: 0s - loss: 1.2397 - acc: 1.0000Epoch 00000: val_loss improved from inf to 1.08817, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 1.2261 - acc: 1.0000 - val_loss: 1.0882 - val_acc: 1.0000
Epoch 2/100
544/560 [============================>.] - ETA: 0s - loss: 1.0417 - acc: 1.0000Epoch 00001: val_loss improved from 1.08817 to 0.94662, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 1.0454 - acc: 1.0000 - val_loss: 0.9466 - val_acc: 1.0000
Epoch 3/100
544/560 [============================>.] - ETA: 0s - loss: 0.8822 - acc: 1.0000Epoch 00002: val_loss improved from 0.94662 to 0.80772, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.8794 - acc: 1.0000 - val_loss: 0.8077 - val_acc: 1.0000
Epoch 4/100
544/560 [============================>.] - ETA: 0s - loss: 0.7291 - acc: 1.0000Epoch 00003: val_loss improved from 0.80772 to 0.69156, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.7267 - acc: 1.0000 - val_loss: 0.6916 - val_acc: 1.0000
Epoch 5/100
544/560 [============================>.] - ETA: 0s - loss: 0.6048 - acc: 1.0000Epoch 00004: val_loss improved from 0.69156 to 0.59554, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.6010 - acc: 1.0000 - val_loss: 0.5955 - val_acc: 1.0000
Epoch 6/100
544/560 [============================>.] - ETA: 0s - loss: 0.5083 - acc: 1.0000Epoch 00005: val_loss improved from 0.59554 to 0.51874, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.5043 - acc: 1.0000 - val_loss: 0.5187 - val_acc: 1.0000
Epoch 7/100
544/560 [============================>.] - ETA: 0s - loss: 0.4321 - acc: 1.0000Epoch 00006: val_loss improved from 0.51874 to 0.46588, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.4329 - acc: 1.0000 - val_loss: 0.4659 - val_acc: 1.0000
Epoch 8/100
544/560 [============================>.] - ETA: 0s - loss: 0.3777 - acc: 1.0000Epoch 00007: val_loss improved from 0.46588 to 0.42702, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.3848 - acc: 1.0000 - val_loss: 0.4270 - val_acc: 1.0000
Epoch 9/100
544/560 [============================>.] - ETA: 0s - loss: 0.3530 - acc: 1.0000Epoch 00008: val_loss improved from 0.42702 to 0.40161, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.3517 - acc: 1.0000 - val_loss: 0.4016 - val_acc: 1.0000
Epoch 10/100
544/560 [============================>.] - ETA: 0s - loss: 0.3281 - acc: 1.0000Epoch 00009: val_loss improved from 0.40161 to 0.38320, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.3313 - acc: 1.0000 - val_loss: 0.3832 - val_acc: 1.0000
Epoch 11/100
544/560 [============================>.] - ETA: 0s - loss: 0.3183 - acc: 1.0000Epoch 00010: val_loss improved from 0.38320 to 0.37276, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.3162 - acc: 1.0000 - val_loss: 0.3728 - val_acc: 1.0000
Epoch 12/100
544/560 [============================>.] - ETA: 0s - loss: 0.3030 - acc: 1.0000Epoch 00011: val_loss improved from 0.37276 to 0.36508, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.3070 - acc: 1.0000 - val_loss: 0.3651 - val_acc: 1.0000
Epoch 13/100
544/560 [============================>.] - ETA: 0s - loss: 0.3039 - acc: 1.0000Epoch 00012: val_loss improved from 0.36508 to 0.35929, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.3007 - acc: 1.0000 - val_loss: 0.3593 - val_acc: 1.0000
Epoch 14/100
544/560 [============================>.] - ETA: 0s - loss: 0.2902 - acc: 1.0000Epoch 00013: val_loss improved from 0.35929 to 0.35512, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2958 - acc: 1.0000 - val_loss: 0.3551 - val_acc: 1.0000
Epoch 15/100
544/560 [============================>.] - ETA: 0s - loss: 0.2964 - acc: 1.0000Epoch 00014: val_loss improved from 0.35512 to 0.35162, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2921 - acc: 1.0000 - val_loss: 0.3516 - val_acc: 1.0000
Epoch 16/100
544/560 [============================>.] - ETA: 0s - loss: 0.2875 - acc: 1.0000Epoch 00015: val_loss improved from 0.35162 to 0.34871, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2890 - acc: 1.0000 - val_loss: 0.3487 - val_acc: 1.0000
Epoch 17/100
544/560 [============================>.] - ETA: 0s - loss: 0.2890 - acc: 1.0000Epoch 00016: val_loss improved from 0.34871 to 0.34618, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2864 - acc: 1.0000 - val_loss: 0.3462 - val_acc: 1.0000
Epoch 18/100
544/560 [============================>.] - ETA: 0s - loss: 0.2792 - acc: 1.0000Epoch 00017: val_loss improved from 0.34618 to 0.34386, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2840 - acc: 1.0000 - val_loss: 0.3439 - val_acc: 1.0000
Epoch 19/100
544/560 [============================>.] - ETA: 0s - loss: 0.2816 - acc: 1.0000Epoch 00018: val_loss improved from 0.34386 to 0.34139, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2818 - acc: 1.0000 - val_loss: 0.3414 - val_acc: 1.0000
Epoch 20/100
544/560 [============================>.] - ETA: 0s - loss: 0.2842 - acc: 1.0000Epoch 00019: val_loss improved from 0.34139 to 0.33975, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2797 - acc: 1.0000 - val_loss: 0.3397 - val_acc: 1.0000
Epoch 21/100
544/560 [============================>.] - ETA: 0s - loss: 0.2749 - acc: 1.0000Epoch 00020: val_loss improved from 0.33975 to 0.33707, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2771 - acc: 1.0000 - val_loss: 0.3371 - val_acc: 1.0000
Epoch 22/100
544/560 [============================>.] - ETA: 0s - loss: 0.2789 - acc: 1.0000Epoch 00021: val_loss improved from 0.33707 to 0.33453, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2752 - acc: 1.0000 - val_loss: 0.3345 - val_acc: 1.0000
Epoch 23/100
544/560 [============================>.] - ETA: 0s - loss: 0.2749 - acc: 1.0000Epoch 00022: val_loss improved from 0.33453 to 0.33248, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2729 - acc: 1.0000 - val_loss: 0.3325 - val_acc: 1.0000
Epoch 24/100
544/560 [============================>.] - ETA: 0s - loss: 0.2689 - acc: 1.0000Epoch 00023: val_loss improved from 0.33248 to 0.33045, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2707 - acc: 1.0000 - val_loss: 0.3304 - val_acc: 1.0000
Epoch 25/100
544/560 [============================>.] - ETA: 0s - loss: 0.2727 - acc: 1.0000Epoch 00024: val_loss improved from 0.33045 to 0.32796, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2686 - acc: 1.0000 - val_loss: 0.3280 - val_acc: 1.0000
Epoch 26/100
544/560 [============================>.] - ETA: 0s - loss: 0.2693 - acc: 1.0000Epoch 00025: val_loss improved from 0.32796 to 0.32578, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2665 - acc: 1.0000 - val_loss: 0.3258 - val_acc: 1.0000
Epoch 27/100
544/560 [============================>.] - ETA: 0s - loss: 0.2649 - acc: 1.0000Epoch 00026: val_loss improved from 0.32578 to 0.32276, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2645 - acc: 1.0000 - val_loss: 0.3228 - val_acc: 1.0000
Epoch 28/100
544/560 [============================>.] - ETA: 0s - loss: 0.2578 - acc: 1.0000Epoch 00027: val_loss improved from 0.32276 to 0.32079, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2623 - acc: 1.0000 - val_loss: 0.3208 - val_acc: 1.0000
Epoch 29/100
544/560 [============================>.] - ETA: 0s - loss: 0.2574 - acc: 1.0000Epoch 00028: val_loss improved from 0.32079 to 0.31779, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2602 - acc: 1.0000 - val_loss: 0.3178 - val_acc: 1.0000
Epoch 30/100
544/560 [============================>.] - ETA: 0s - loss: 0.2590 - acc: 1.0000Epoch 00029: val_loss improved from 0.31779 to 0.31561, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2577 - acc: 1.0000 - val_loss: 0.3156 - val_acc: 1.0000
Epoch 31/100
544/560 [============================>.] - ETA: 0s - loss: 0.2534 - acc: 1.0000Epoch 00030: val_loss improved from 0.31561 to 0.31343, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2559 - acc: 1.0000 - val_loss: 0.3134 - val_acc: 1.0000
Epoch 32/100
544/560 [============================>.] - ETA: 0s - loss: 0.2493 - acc: 1.0000Epoch 00031: val_loss improved from 0.31343 to 0.31053, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2534 - acc: 1.0000 - val_loss: 0.3105 - val_acc: 1.0000
Epoch 33/100
544/560 [============================>.] - ETA: 0s - loss: 0.2481 - acc: 1.0000Epoch 00032: val_loss improved from 0.31053 to 0.30754, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2513 - acc: 1.0000 - val_loss: 0.3075 - val_acc: 1.0000
Epoch 34/100
544/560 [============================>.] - ETA: 0s - loss: 0.2500 - acc: 1.0000Epoch 00033: val_loss improved from 0.30754 to 0.30495, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2491 - acc: 1.0000 - val_loss: 0.3049 - val_acc: 1.0000
Epoch 35/100
544/560 [============================>.] - ETA: 0s - loss: 0.2475 - acc: 1.0000Epoch 00034: val_loss improved from 0.30495 to 0.30245, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2469 - acc: 1.0000 - val_loss: 0.3025 - val_acc: 1.0000
Epoch 36/100
544/560 [============================>.] - ETA: 0s - loss: 0.2452 - acc: 1.0000Epoch 00035: val_loss improved from 0.30245 to 0.29958, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2449 - acc: 1.0000 - val_loss: 0.2996 - val_acc: 1.0000
Epoch 37/100
544/560 [============================>.] - ETA: 0s - loss: 0.2416 - acc: 1.0000Epoch 00036: val_loss improved from 0.29958 to 0.29698, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2424 - acc: 1.0000 - val_loss: 0.2970 - val_acc: 1.0000
Epoch 38/100
544/560 [============================>.] - ETA: 0s - loss: 0.2436 - acc: 1.0000Epoch 00037: val_loss improved from 0.29698 to 0.29390, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2402 - acc: 1.0000 - val_loss: 0.2939 - val_acc: 1.0000
Epoch 39/100
544/560 [============================>.] - ETA: 0s - loss: 0.2396 - acc: 1.0000Epoch 00038: val_loss improved from 0.29390 to 0.29025, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2384 - acc: 1.0000 - val_loss: 0.2902 - val_acc: 1.0000
Epoch 40/100
544/560 [============================>.] - ETA: 0s - loss: 0.2338 - acc: 1.0000Epoch 00039: val_loss improved from 0.29025 to 0.28829, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2357 - acc: 1.0000 - val_loss: 0.2883 - val_acc: 1.0000
Epoch 41/100
544/560 [============================>.] - ETA: 0s - loss: 0.2383 - acc: 1.0000Epoch 00040: val_loss improved from 0.28829 to 0.28560, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2336 - acc: 1.0000 - val_loss: 0.2856 - val_acc: 1.0000
Epoch 42/100
544/560 [============================>.] - ETA: 0s - loss: 0.2292 - acc: 1.0000Epoch 00041: val_loss improved from 0.28560 to 0.28302, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2320 - acc: 1.0000 - val_loss: 0.2830 - val_acc: 1.0000
Epoch 43/100
544/560 [============================>.] - ETA: 0s - loss: 0.2287 - acc: 1.0000Epoch 00042: val_loss improved from 0.28302 to 0.27963, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2296 - acc: 1.0000 - val_loss: 0.2796 - val_acc: 1.0000
Epoch 44/100
544/560 [============================>.] - ETA: 0s - loss: 0.2164 - acc: 1.0000Epoch 00043: val_loss improved from 0.27963 to 0.27773, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2276 - acc: 1.0000 - val_loss: 0.2777 - val_acc: 1.0000
Epoch 45/100
544/560 [============================>.] - ETA: 0s - loss: 0.2262 - acc: 1.0000Epoch 00044: val_loss improved from 0.27773 to 0.27329, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2251 - acc: 1.0000 - val_loss: 0.2733 - val_acc: 1.0000
Epoch 46/100
544/560 [============================>.] - ETA: 0s - loss: 0.2176 - acc: 1.0000Epoch 00045: val_loss improved from 0.27329 to 0.27094, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2230 - acc: 1.0000 - val_loss: 0.2709 - val_acc: 1.0000
Epoch 47/100
544/560 [============================>.] - ETA: 0s - loss: 0.2235 - acc: 1.0000Epoch 00046: val_loss improved from 0.27094 to 0.26786, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2210 - acc: 1.0000 - val_loss: 0.2679 - val_acc: 1.0000
Epoch 48/100
544/560 [============================>.] - ETA: 0s - loss: 0.2155 - acc: 1.0000Epoch 00047: val_loss improved from 0.26786 to 0.26500, saving model to dummynet-progress
560/560 [==============================] - 0s - loss: 0.2187 - acc: 1.0000 - val_loss: 0.2650 - val_acc: 1.0000
Epoch 49/100
64/560 [==>...........................] - ETA: 0s - loss: 0.3197 - acc: 1.0000