---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-33-7758e725acd8> in <module>()
----> 1 df.groupby(df.marking).angle.agg([np.min, np.max]).compute()
/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/dask/base.py in compute(self, **kwargs)
76 Extra keywords to forward to the scheduler ``get`` function.
77 """
---> 78 return compute(self, **kwargs)[0]
79
80 @classmethod
/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/dask/base.py in compute(*args, **kwargs)
176 dsk = merge(var.dask for var in variables)
177 keys = [var._keys() for var in variables]
--> 178 results = get(dsk, keys, **kwargs)
179
180 results_iter = iter(results)
/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/dask/threaded.py in get(dsk, result, cache, num_workers, **kwargs)
67 results = get_async(pool.apply_async, len(pool._pool), dsk, result,
68 cache=cache, get_id=_thread_get_id,
---> 69 **kwargs)
70
71 # Cleanup pools associated to dead threads
/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/dask/async.py in get_async(apply_async, num_workers, dsk, result, cache, get_id, raise_on_exception, rerun_exceptions_locally, callbacks, dumps, loads, **kwargs)
500 _execute_task(task, data) # Re-execute locally
501 else:
--> 502 raise(remote_exception(res, tb))
503 state['cache'][key] = res
504 finish_task(dsk, key, state, results, keyorder.get)
TypeError: unorderable types: str() >= float()
Traceback
---------
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/dask/async.py", line 268, in execute_task
result = _execute_task(task, data)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/dask/async.py", line 249, in _execute_task
return func(*args2)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/dask/compatibility.py", line 47, in apply
return func(*args, **kwargs)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/dask/dataframe/groupby.py", line 406, in _groupby_apply_funcs
result[result_column] = func(grouped, **func_kwargs)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/dask/dataframe/groupby.py", line 428, in _apply_func_to_column
return func(df_like[column])
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/dask/utils.py", line 879, in __call__
return getattr(obj, self.method)(*args, **kwargs)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/pandas/core/groupby.py", line 118, in f
result = self.aggregate(lambda x: npfunc(x, axis=self.axis))
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/pandas/core/groupby.py", line 2658, in aggregate
result = self._aggregate_named(func_or_funcs, *args, **kwargs)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/pandas/core/groupby.py", line 2776, in _aggregate_named
output = func(group, *args, **kwargs)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/pandas/core/groupby.py", line 118, in <lambda>
result = self.aggregate(lambda x: npfunc(x, axis=self.axis))
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/numpy/core/fromnumeric.py", line 2294, in amax
return amax(axis=axis, out=out, **kwargs)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/pandas/core/generic.py", line 5625, in stat_func
numeric_only=numeric_only)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/pandas/core/series.py", line 2318, in _reduce
return op(delegate, skipna=skipna, **kwds)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/pandas/core/nanops.py", line 109, in f
result = alt(values, axis=axis, skipna=skipna, **kwds)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/pandas/core/nanops.py", line 446, in reduction
result = getattr(values, meth)(axis)
File "/Users/klay6683/miniconda3/envs/stable/lib/python3.5/site-packages/numpy/core/_methods.py", line 26, in _amax
return umr_maximum(a, axis, None, out, keepdims)