In [3]:
# Import matplotlib (plotting) and numpy (numerical arrays).
# This enables their use in the Notebook.
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import sqlite3
in_db = 'in.db'
data_db = 'data.db'
view_db = 'view.db'
# Import IPython's interact function which is used below to
# build the interactive widgets
from IPython.html.widgets import interact
def plot_sine(refresh=True): #, frequency=4.0, grid_points=12):
"""
Plot discrete samples of a sine wave on the interval ``[0, 1]``.
"""
""""
conn = sqlite3.connect(view_db)
c = conn.cursor()
for row in c.execute('SELECT * FROM vPrice'):
print row
conn.close()
#print refresh
plot_original = True
frequency = 4
grid_points = 12
x = np.linspace(0, 1, grid_points + 2)
y = np.sin(2 * frequency * np.pi * x)
xf = np.linspace(0, 1, 1000)
yf = np.sin(2 * frequency * np.pi * xf)
fig, ax = plt.subplots(figsize=(8, 6))
ax.set_xlabel('x')
ax.set_ylabel('signal')
ax.set_title('Aliasing in discretely sampled periodic signal')
if plot_original:
ax.plot(xf, yf, color='red', linestyle='solid', linewidth=2)
ax.plot(x, y, marker='o', linewidth=2)
"""
fig1 = plt.figure()
fig1.suptitle('GBP/USD price')
fig1.autofmt_xdate()
ax1 = fig1.add_subplot(1,1,1)
data = []
x = []
y = []
conn = sqlite3.connect(view_db, detect_types=sqlite3.PARSE_COLNAMES)
c = conn.cursor()
#df = pd.read_sql("SELECT count(*), status from iPrice group by status",conn) #,conn,parse_dates={'date':'%Y-%m-%d'})
results = c.execute('SELECT date as "[timestamp]", price from vPrice ')
#print results
for row in results:
#print row[0], row[1]
#print type(row[0])
d = row[0]
#dt = datetime.datetime.strptime(d, '%Y-%m-%d %H:%M:%S.%fZ')
x.append(row[0])
y.append(row[1])
conn.close()
ax1.clear()
ax1.plot(x,y)
#ax1.legend(loc='upper left')
# The interact function automatically builds a user interface for exploring the
# plot_sine function.
interact(plot_sine, refresh=True)#, frequency=(1.0, 22.0, 0.5), grid_points=(10, 16, 1), );
In [ ]:
In [ ]: