Goal: Try to successfully run a coupled EvapEnergyBalance-Meteorology-SnowDegreeDay
simulation, with EvapEnergyBalance
as the driver.
Import the Babel-wrapped EvapEnergyBalance
, Meteorology
and SnowDegreeDay
components and create instances:
In [ ]:
from cmt.components import EvapEnergyBalance, Meteorology, SnowDegreeDay
evp, met, sno = EvapEnergyBalance(), Meteorology(), SnowDegreeDay()
Initialize the components with cfg files that, for simplicity, use the same time step and run duration:
In [ ]:
%cd input
In [ ]:
evp.initialize('evap_energy_balance-1.cfg')
met.initialize('meteorology-2.cfg')
sno.initialize('snow_degree_day-1.cfg')
Store initial values of time, snow depth, and air temperature:
In [ ]:
time = [met.get_current_time()]
snow_depth = [sno.get_value('snowpack__depth').max()]
air_temp = [met.get_value('atmosphere_bottom_air__temperature').max()]
evap_flux = [evp.get_value('land_surface_water__evaporation_volume_flux').max()]
Run the coupled models to completion. In each time step, perform the following actions:
Meteorology
; set into SnowDegreeDay
SnowDegreeDay
SnowDegreeDay
; set into Meteorology
Meteorology
Meteorology
and SnowDegreeDay
; set into EvapEnergyBalance
EvapEnergyBalance
In [ ]:
count = 1
while evp.get_current_time() < evp.get_end_time():
T_air = met.get_value('atmosphere_bottom_air__temperature')
P_snow = met.get_value('atmosphere_water__snowfall_leq-volume_flux')
T_surf = met.get_value('land_surface__temperature')
rho_H2O = met.get_value('water-liquid__mass-per-volume_density')
sno.set_value('atmosphere_bottom_air__temperature', T_air)
sno.set_value('atmosphere_water__snowfall_leq-volume_flux', P_snow)
sno.set_value('land_surface__temperature', T_surf)
sno.set_value('water-liquid__mass-per-volume_density', rho_H2O)
sno.update(sno.get_time_step()*count)
rho_snow = sno.get_value('snowpack__z_mean_of_mass-per-volume_density')
h_snow = sno.get_value('snowpack__depth')
h_swe = sno.get_value('snowpack__liquid-equivalent_depth')
SM = sno.get_value('snowpack__melt_volume_flux')
met.set_value('snowpack__z_mean_of_mass-per-volume_density', rho_snow)
met.set_value('snowpack__depth', h_snow)
met.set_value('snowpack__liquid-equivalent_depth', h_swe)
met.set_value('snowpack__melt_volume_flux', SM)
met.update(met.get_time_step()*count)
T_air = met.get_value('atmosphere_bottom_air__temperature')
Qe = met.get_value('atmosphere_bottom_air_land_net-latent-heat__energy_flux')
Q_sum = met.get_value('land_surface_net-total-energy__energy_flux')
T_surf = met.get_value('land_surface__temperature')
h_snow = sno.get_value('snowpack__depth')
evp.set_value('atmosphere_bottom_air__temperature', T_air)
evp.set_value('atmosphere_bottom_air_land_net-latent-heat__energy_flux', Qe)
evp.set_value('land_surface_net-total-energy__energy_flux', Q_sum)
evp.set_value('land_surface__temperature', T_surf)
evp.set_value('snowpack__depth', h_snow)
evp.update(evp.get_time_step()*count)
time.append(met.get_current_time())
snow_depth.append(sno.get_value('snowpack__depth').max())
air_temp.append(met.get_value('atmosphere_bottom_air__temperature').max())
evap_flux.append(evp.get_value('land_surface_water__evaporation_volume_flux').max())
count += 1
In [ ]:
print time
In [ ]:
print snow_depth
In [ ]:
print air_temp
In [ ]:
print evap_flux
Finalize the components:
In [ ]:
evp.finalize(), met.finalize(), sno.finalize()
Plot snow depth versus time.
In [ ]:
%matplotlib inline
from matplotlib import pyplot as plt
In [ ]:
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
snow_depth_plot = axes[0].plot(time[1:], snow_depth[1:], 'b')
axes[0].set_title('Snow depth versus time')
axes[0].set_xlabel('Time [s]')
axes[0].set_ylabel('Snow depth [m]')
evap_flux_plot = axes[1].plot(time[1:], evap_flux[1:], 'r')
axes[1].set_title('Evaporative flux versus time')
axes[1].set_xlabel('Time [s]')
axes[1].set_ylabel('Evaporative flux [m s-1]')
Result: Indeterminate.