In [1]:
    
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
    
In [2]:
    
my_data = np.loadtxt('myGAMA_ALL_AB_ABSOL_MAGS.csv', delimiter=',', dtype=str)
    
In [3]:
    
print my_data.shape
    
    
In [4]:
    
my_dictionary = {}
for i in range(len(my_data[0, :])):                                         # Converting numpy array into dictionary
    my_dictionary[my_data[0, i]] = np.array(my_data[0 + 1:, i], dtype=str)
    
In [5]:
    
redshift = my_dictionary['Z_HELIO'].astype(float)
fuv_band = my_dictionary['MAG_AB_FUV'].astype(float)   
nuv_band = my_dictionary['MAG_AB_NUV'].astype(float)
r_band   = my_dictionary['MAG_AB_R'].astype(float)
    
In [6]:
    
print redshift[[fuv_band>0]].shape
print fuv_band[[fuv_band>0]].shape
    
    
In [7]:
    
print redshift.shape
print fuv_band.shape
    
    
In [8]:
    
print redshift.size
print fuv_band.size
    
    
We need to remove all the spurious data here.
In [9]:
    
indexes = np.arange(redshift.size)
    
In [10]:
    
index_clean = indexes[(redshift>0.015)*(r_band>0)*(nuv_band>0)*(fuv_band>0)*((fuv_band-nuv_band)<50)*((fuv_band-nuv_band)>(-20))]
    
In [11]:
    
print redshift[index_clean].size
    
    
In [12]:
    
my_clean_data = my_data[index_clean].astype(str)
    
In [13]:
    
print my_clean_data.shape
#print my_clean_data[0,:]  #checking if the header is ok!
    
    
In [14]:
    
my_df = pd.DataFrame(my_clean_data)
    
In [15]:
    
my_df.to_csv('myGAMA_ALL_AB_ABSOL_MAGS_clean.csv', sep=',', header=None, index=False)
    
In [16]:
    
!pwd
    
    
In [ ]: