I'm running a few sets of chains that are fitting the redMagic HOD to a shuffled SHAM, as well as SHAMs with assembly bias to see what happens. I want all the tests I want to do to be in one place. This notebook will do the following:
In [14]:
from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
In [15]:
import numpy as np
from chainconsumer import ChainConsumer
In [16]:
from astropy.table import Table
from halotools.utils.table_utils import compute_conditional_percentiles
from halotools.mock_observables import hod_from_mock, wp, tpcf
from pearce.mocks import cat_dict
from pearce.mocks.customHODModels import *
from math import ceil
In [17]:
#fname = '/u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_shuffled_sham_3.npy'
fname = '/u/ki/swmclau2/des/PearceMCMC/200_walkers_5000_steps_chain_shuffled_sham2.npy'
#fname = '/u/ki/swmclau2/des/PearceMCMC/200_walkers_5000_steps_chain_vpeak_sham_no_ab.npy'
#fname = '/u/ki/swmclau2/des/PearceMCMC/200_walkers_5000_steps_chain_vpeak_sham_no_ab_2.npy'
#fname = '/u/ki/swmclau2/des/PearceMCMC/200_walkers_5000_steps_chain_vpeak_sham_fscab.npy'
In [18]:
chain = np.loadtxt(fname )
In [19]:
chain.shape
Out[19]:
In [25]:
n_walkers = 200
n_burn = 500
n_params = chain.shape[1]
In [26]:
chain = chain[n_burn*n_walkers:, :]
In [27]:
chain.shape
Out[27]:
In [28]:
param_names = [r'$\log{M_{min}}$', r'$\log{M_0}$',r'$\sigma_{log{M}}$', r'$\log{M_1}$', r'$\alpha$']
#param_names = [r'$\log{M_{min}}$',r'$\mathcal{A}_{cen}$', r'$\log{M_0}$',r'$\sigma_{log{M}}$',\
# r'$\mathcal{B}_{sat}$', r'$f_{cen}$', r'$f_{sat}$',r'$\mathcal{A}_{sat}$', \
# r'$\mathcal{B}_{cen}$', r'$\log{M_1}$', r'$\alpha$']
#param_names = [r'$f_{sat}$',r'$\mathcal{A}_{sat}$',r'$f_{cen}$', r'$\mathcal{A}_{cen}$']
#param_names = [r'$\mathcal{A}_{sat}$',r'$\mathcal{A}_{cen}$']
In [29]:
c = ChainConsumer()
c.add_chain(chain, parameters=param_names, walkers=n_walkers)
c.configure(statistics='max')
Out[29]:
In [30]:
gelman_rubin_converged = c.diagnostic.gelman_rubin()
print gelman_rubin_converged
In [31]:
best_fit_vals = np.array([ 12.87364502, 12.23898854,0.53433088, 13.97462748, 1.04479171])
In [32]:
fig = c.plotter.plot(figsize=(8,8), parameters=param_names, truth = best_fit_vals)
fig.show()
In [33]:
fig = c.plotter.plot_distributions(figsize=(10,10) )
fig.show()
In [34]:
summary = c.analysis.get_summary()
MAP = np.array([summary[p][1] for p in param_names])
print MAP
In [35]:
print param_names
In [36]:
PMASS = 591421440.0000001 #chinchilla 400/ 2048
halo_catalog = Table.read('/u/ki/swmclau2/des/AB_tests/abmatched_halos.hdf5', format = 'hdf5')
In [37]:
shuffle_type = 'sh_shuffled'
mag_type = 'vpeak'
mag_key = 'halo_%s_mag'%(mag_type)
upid_key = 'halo_upid'
#mag_key = 'halo%s_%s_mag'%(shuffle_type, mag_type)
#upid_key = 'halo%s_upid'%shuffle_type
In [38]:
cosmo_params = {'simname':'chinchilla', 'Lbox':400.0, 'scale_factors':[0.658, 1.0]}
cat = cat_dict[cosmo_params['simname']](**cosmo_params)#construct the specified catalog!
cat.load_catalog(1.0)
#cat.h = 1.0
In [39]:
mag_cut = -21
min_ptcl = 200
halo_catalog = halo_catalog[halo_catalog['halo_mvir'] > min_ptcl*cat.pmass] #mass cut
galaxy_catalog = halo_catalog[ halo_catalog[mag_key] < mag_cut ] # mag cut
In [40]:
def compute_mass_bins(prim_haloprop, dlog10_prim_haloprop=0.1):
lg10_min_prim_haloprop = np.log10(np.min(prim_haloprop))-0.001
lg10_max_prim_haloprop = np.log10(np.max(prim_haloprop))+0.001
num_prim_haloprop_bins = (lg10_max_prim_haloprop-lg10_min_prim_haloprop)/dlog10_prim_haloprop
return np.logspace(
lg10_min_prim_haloprop, lg10_max_prim_haloprop,
num=int(ceil(num_prim_haloprop_bins)))
In [41]:
mass_bins = compute_mass_bins(halo_catalog['halo_mvir'], 0.2)
mass_bin_centers = (mass_bins[1:]+mass_bins[:-1])/2.0
#mass_bin_centers = 10**((np.log10(mass_bins[1:])+np.log10(mass_bins[:-1]))/2.0)
In [42]:
cen_mask = galaxy_catalog['halo_upid']==-1
mass_key = 'halo_mvir_host_halo'#
#mass_key = 'halo_%s_host_mvir'%shuffle_type
cen_hod_sham, _ = hod_from_mock(galaxy_catalog[cen_mask][mass_key],\
halo_catalog['halo_mvir'],\
mass_bins)
sat_hod_sham, _ = hod_from_mock(galaxy_catalog[~cen_mask][mass_key],\
halo_catalog['halo_mvir'],\
mass_bins)
In [43]:
np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/cen_hod.npy', cen_hod_sham)
np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sat_hod.npy', sat_hod_sham)
np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/mbc.npy', mass_bin_centers)
In [44]:
training_dir = '/u/ki/swmclau2/des/PearceLHC_wp_z_sham_free_split_no_rsd/'
In [45]:
#rp_bins = np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/rp_bins.npy')
#rp_bins = np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/rpoints.npy')
rp_bins = np.loadtxt(training_dir+'a_1.00000/global_file.npy')
#rp_bins = np.logspace(-1.1, 1.6, 16)
#rpoints = np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/rpoints.npy')
rpoints = (rp_bins[1:]+rp_bins[:-1])/2.0
#wp_sham = np.log10(np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sham_%s%s_wp.npy'%(mag_type, shuffle_type)))
In [46]:
#np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/rp_bins.npy', rp_bins)
In [47]:
cat.load_model(1.0, HOD='fscabRedMagic')
#cat.load_model(1.0, HOD=(FSAssembiasTabulatedCens, FSAssembiasTabulatedSats), hod_kwargs = {'prim_haloprop_vals': mass_bin_centers,
#cat.load_model(1.0, HOD=(HSAssembiasTabulatedCens, HSAssembiasTabulatedSats), hod_kwargs = {'prim_haloprop_vals': mass_bin_centers,
#'sec_haloprop_key': 'halo_%s'%(mag_type),
# 'cen_hod_vals':cen_hod_sham,
# 'sat_hod_vals':sat_hod_sham})
In [48]:
cat.model.param_dict
Out[48]:
In [49]:
#summary = c.analysis.get_summary()
MAP = np.array([summary[p][1] for p in param_names])
#MAP = np.zeros((len(param_names),))
#MAP = chain[np.random.randint(chain.shape[0]), :]
print MAP
In [50]:
param_names
Out[50]:
In [51]:
#names = ['mean_occupation_satellites_assembias_split1','mean_occupation_satellites_assembias_param1',
# 'mean_occupation_centrals_assembias_split1', 'mean_occupation_centrals_assembias_param1']
names = ['logMmin','logM0','sigma_logM', 'logM1', 'alpha']
#names = ['mean_occupation_satellites_assembias_param1', 'mean_occupation_centrals_assembias_param1']
In [52]:
params = dict(zip(names, MAP))
params['f_c'] = 1.0
cat.populated_once = False
cat.populate(params)
In [53]:
cat.model.param_dict
Out[53]:
In [54]:
cen_mask = cat.model.mock.galaxy_table['gal_type']=='centrals'
cen_hod_mock, _ = hod_from_mock(cat.model.mock.galaxy_table[cen_mask]['halo_mvir'],\
halo_catalog['halo_mvir'],\
mass_bins)
sat_hod_mock, _ = hod_from_mock(cat.model.mock.galaxy_table[~cen_mask]['halo_mvir'],\
halo_catalog['halo_mvir'],\
mass_bins)
In [55]:
wp_hod = cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False, RSD=False)
print wp_hod
#wp_hod = cat.calc_xi(rp_bins, do_jackknife=False)
In [56]:
from halotools.mock_observables import return_xyz_formatted_array
In [57]:
sham_pos = np.c_[galaxy_catalog['halo_x'],\
galaxy_catalog['halo_y'],\
galaxy_catalog['halo_z']]
wp_sham = wp(sham_pos*cat.h, rp_bins, 40.0*cat.h, period=cat.Lbox*cat.h, num_threads=1)
print wp_sham
#wp_sham = tpcf(sham_pos*h, rp_bins, period=400.0*h, num_threads=1)
#wp_sham = np.log10(wp(sham_pos, rp_bins, 40.0, period=400.0, num_threads=1))
In [58]:
#np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sham_%s_%s_wp.npy'%(mag_type, shuffle_type), wp_sham)
#np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sham_vpeak_shuffled_nd.npy',np.array([cat.calc_analytic_nd()]) )
In [59]:
plt.plot(mass_bin_centers, cen_hod_sham+sat_hod_sham, label = 'SHAM')
plt.plot(mass_bin_centers, cen_hod_mock+sat_hod_mock, label = 'HOD Fit')
plt.legend(loc='best')
plt.xlabel(r"$\log{M_{vir}}$")
plt.ylabel(r"$\log{<N|M>}$")
plt.loglog()
plt.show();
In [60]:
plt.plot(mass_bin_centers, sat_hod_sham, label = 'SHAM')
plt.plot(mass_bin_centers, sat_hod_mock, label = 'HOD')
plt.legend(loc='best')
plt.vlines(PMASS*min_ptcl,0, 100)
plt.loglog()
plt.show();
In [61]:
plt.plot(mass_bin_centers, cen_hod_sham, label = 'SHAM')
plt.plot(mass_bin_centers, cen_hod_mock, label = 'HOD')
plt.legend(loc='best')
plt.vlines(PMASS*min_ptcl,0, 100)
plt.loglog()
plt.show();
In [62]:
sham_nd = len(galaxy_catalog)/(cat.Lbox*0.7)**3
hod_nd = cat.calc_analytic_nd()
In [63]:
print sham_nd/hod_nd
In [64]:
plt.plot(rpoints, wp_sham, label = 'SHAM')
plt.plot(rpoints, wp_hod, label = 'HOD Fit')
plt.loglog()
#plt.xscale('log')
#plt.ylim([-0.2, 3.5])
plt.legend(loc='best')
plt.xlabel(r"$r_p$")
plt.ylabel(r"$w_p(r_p)$")
plt.show()
In [65]:
#plt.plot(rpoints, wp_sham, label = 'SHAM')
plt.plot(rpoints, wp_sham/wp_hod, label = 'HOD Fit')
plt.xscale('log')
#plt.xscale('log')
#plt.ylim([-0.2, 3.5])
plt.legend(loc='best')
plt.xlabel(r"$r_p$")
plt.ylabel(r"$w_p(r_p)$")
plt.show()
In [ ]:
wp_hod
In [ ]:
plt.figure(figsize=(10,8))
#plt.plot(rpoints, wp_sham/wp_sham, label = 'SHAM')
plt.plot(rpoints, wp_hod/wp_sham, label = 'HOD Fit')
plt.xscale('log')
plt.legend(loc='best',fontsize = 15)
plt.xlim([1e-1, 30e0]);
#plt.ylim([1,15000])
plt.xlabel(r'$r$',fontsize = 15)
plt.ylabel(r'$\xi(r)$',fontsize = 15)
plt.show()
In [ ]:
print wp_sham/wp_hod
In [ ]:
print wp_sham
print wp_hod
In [ ]:
from pearce.emulator import OriginalRecipe, ExtraCrispy
In [ ]:
training_dir = '/u/ki/swmclau2/des/PearceLHC_wp_z_sham_emulator_no_rsd/'
em_method = 'gp'
split_method = 'random'
load_fixed_params = {'z':0.0}
emu = ExtraCrispy(training_dir,10, 2, split_method, method=em_method, fixed_params=load_fixed_params)
In [ ]:
for n in names:
print n, emu.get_param_bounds(n)
In [ ]: