I'm running a few sets of chains that are fitting the redMagic HOD to a shuffled SHAM, as well as SHAMs with assembly bias to see what happens. I want all the tests I want to do to be in one place. This notebook will do the following:
In [192]:
from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
In [193]:
import numpy as np
from chainconsumer import ChainConsumer
In [194]:
from astropy.table import Table
from halotools.utils.table_utils import compute_conditional_percentiles
from halotools.mock_observables import hod_from_mock, wp, tpcf
from pearce.mocks import cat_dict
from pearce.mocks.customHODModels import *
from math import ceil
In [195]:
#fname = '/u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_vpeak_sham_hs.npy'
#fname = '/u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_shuffled_sham_2.npy'
#fname = '/u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_vpeak_sham_free_split_3.npy'
fname = '/u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_vpeak_sham_free_split_fixed_sat.npy'
In [196]:
chain = np.genfromtxt(fname )
In [197]:
n_walkers = 100
n_burn = 200
n_params = chain.shape[1]
In [198]:
c = chain.reshape((n_walkers, -1, n_params))
chain = c[:,n_burn:, :].reshape((-1, n_params))
In [199]:
chain[:10,:]
Out[199]:
In [200]:
#param_names = [r'$\log{M_{min}}$', r'$\log{M_0}$',r'$\sigma_{log{M}}$', r'$\log{M_1}$', r'$\alpha$']
#param_names = [r'$f_{sat}$',r'$\mathcal{A}_{sat}$',r'$f_{cen}$', r'$\mathcal{A}_{cen}$']
param_names = [r'$\mathcal{A}_{sat}$',r'$f_{cen}$', r'$\mathcal{A}_{cen}$']
#param_names = [r'$\mathcal{A}_{sat}$',r'$\mathcal{A}_{cen}$']
In [201]:
c = ChainConsumer()
c.add_chain(chain, parameters=param_names, walkers=n_walkers, name = 'Free Split')
#c.configure(statistics='cumulative')
Out[201]:
In [202]:
#fname2 = '/u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_vpeak_sham_hs.npy'
fname2 = '/u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_vpeak_sham_hs.npy'
In [203]:
chain2 = np.genfromtxt(fname2 )
In [204]:
n_params = chain2.shape[1]
In [205]:
_c = chain2.reshape((n_walkers, -1, n_params))
chain2 = _c[:,n_burn:, :].reshape((-1, n_params))
In [206]:
#param_names = [r'$\log{M_{min}}$', r'$\log{M_0}$',r'$\sigma_{log{M}}$', r'$\log{M_1}$', r'$\alpha$']
#param_names = [r'$f_{sat}$',r'$\mathcal{A}_{sat}$',r'$f_{cen}$', r'$\mathcal{A}_{cen}$']
param_names2 = [r'$\mathcal{A}_{sat}$',r'$\mathcal{A}_{cen}$']
In [207]:
c.add_chain(chain2, parameters=param_names2, walkers=n_walkers, name = 'Heaviside')
#c.configure(statistics='cumulative')
Out[207]:
In [208]:
gelman_rubin_converged = c.diagnostic.gelman_rubin()
print gelman_rubin_converged
In [209]:
fig = c.plotter.plot(figsize=(8,8), parameters=param_names)
fig.show()
In [210]:
fig = c.plotter.plot(figsize=(8,8), parameters=param_names2)
fig.show()
In [211]:
fig = c.plotter.plot_distributions(figsize=(10,10) )
fig.show()
In [212]:
summary = c.analysis.get_summary()
MAP = np.array([summary[0][p][1] for p in param_names])
print MAP
In [213]:
#MAP[0] = 0.65
#MAP[1] = -0.75
MAP[0] = 0.9
MAP[1] = -1.0
In [214]:
PMASS = 591421440.0000001 #chinchilla 400/ 2048
halo_catalog = Table.read('/u/ki/swmclau2/des/AB_tests/abmatched_halos.hdf5', format = 'hdf5')
In [215]:
shuffle_type = ''
mag_type = 'vpeak'
mag_key = 'halo_%s_mag'%(mag_type)
upid_key = 'halo_upid'
#mag_key = 'halo%s_%s_mag'%(shuffle_type, mag_type)
#upid_key = 'halo%s_upid'%shuffle_type
In [216]:
cosmo_params = {'simname':'chinchilla', 'Lbox':400.0, 'scale_factors':[0.658, 1.0]}
cat = cat_dict[cosmo_params['simname']](**cosmo_params)#construct the specified catalog!
cat.load_catalog(1.0)
#cat.h = 1.0
In [217]:
mag_cut = -21
min_ptcl = 200
halo_catalog = halo_catalog[halo_catalog['halo_mvir'] > min_ptcl*cat.pmass] #mass cut
galaxy_catalog = halo_catalog[ halo_catalog[mag_key] < mag_cut ] # mag cut
In [218]:
def compute_mass_bins(prim_haloprop, dlog10_prim_haloprop=0.1):
lg10_min_prim_haloprop = np.log10(np.min(prim_haloprop))-0.001
lg10_max_prim_haloprop = np.log10(np.max(prim_haloprop))+0.001
num_prim_haloprop_bins = (lg10_max_prim_haloprop-lg10_min_prim_haloprop)/dlog10_prim_haloprop
return np.logspace(
lg10_min_prim_haloprop, lg10_max_prim_haloprop,
num=int(ceil(num_prim_haloprop_bins)))
In [219]:
mass_bins = compute_mass_bins(halo_catalog['halo_mvir'], 0.2)
mass_bin_centers = (mass_bins[1:]+mass_bins[:-1])/2.0
#mass_bin_centers = 10**((np.log10(mass_bins[1:])+np.log10(mass_bins[:-1]))/2.0)
In [220]:
cen_mask = galaxy_catalog['halo_upid']==-1
mass_key = 'halo_mvir_host_halo'#
#mass_key = 'halo_%s_host_mvir'%shuffle_type
cen_hod_sham, _ = hod_from_mock(galaxy_catalog[cen_mask][mass_key],\
halo_catalog['halo_mvir'],\
mass_bins)
sat_hod_sham, _ = hod_from_mock(galaxy_catalog[~cen_mask][mass_key],\
halo_catalog['halo_mvir'],\
mass_bins)
In [221]:
np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/cen_hod.npy', cen_hod_sham)
np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sat_hod.npy', sat_hod_sham)
np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/mbc.npy', mass_bin_centers)
In [222]:
training_dir = '/u/ki/swmclau2/des/PearceLHC_wp_z_sham_free_split_no_rsd/'
In [223]:
#rp_bins = np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/rp_bins.npy')
#rp_bins = np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/rpoints.npy')
rp_bins = np.loadtxt(training_dir+'a_1.00000/global_file.npy')
#rp_bins = np.logspace(-1.1, 1.6, 16)
#rpoints = np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/rpoints.npy')
rpoints = (rp_bins[1:]+rp_bins[:-1])/2.0
#wp_sham = np.log10(np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sham_%s%s_wp.npy'%(mag_type, shuffle_type)))
In [224]:
#np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/rp_bins.npy', rp_bins)
In [225]:
#cat.load_model(1.0, HOD='redMagic')
cat.load_model(1.0, HOD=(FSAssembiasTabulatedCens, FSAssembiasTabulatedSats), hod_kwargs = {'prim_haloprop_vals': mass_bin_centers,
#cat.load_model(1.0, HOD=(HSAssembiasTabulatedCens, HSAssembiasTabulatedSats), hod_kwargs = {'prim_haloprop_vals': mass_bin_centers,
#'sec_haloprop_key': 'halo_%s'%(mag_type),
'cen_hod_vals':cen_hod_sham,
'sat_hod_vals':sat_hod_sham})
In [226]:
cat.model.param_dict
Out[226]:
In [227]:
#summary = c.analysis.get_summary()
#MAP = np.array([summary[p][1] for p in param_names])
#MAP = np.zeros((len(param_names),))
#MAP = chain[np.random.randint(chain.shape[0]), :]
print MAP
In [263]:
param_names
Out[263]:
In [264]:
names = ['mean_occupation_satellites_assembias_param1',
'mean_occupation_centrals_assembias_split1', 'mean_occupation_centrals_assembias_param1']
#names = ['logMmin','logM0','sigma_logM', 'logM1', 'alpha']
#names = ['mean_occupation_satellites_assembias_param1', 'mean_occupation_centrals_assembias_param1']
In [265]:
params = dict(zip(names, MAP))
#params['f_c'] = 1.0
cat.populated_once = False
cat.populate(params)
In [266]:
cat.model.param_dict
Out[266]:
In [267]:
cen_mask = cat.model.mock.galaxy_table['gal_type']=='centrals'
cen_hod_mock, _ = hod_from_mock(cat.model.mock.galaxy_table[cen_mask]['halo_mvir'],\
halo_catalog['halo_mvir'],\
mass_bins)
sat_hod_mock, _ = hod_from_mock(cat.model.mock.galaxy_table[~cen_mask]['halo_mvir'],\
halo_catalog['halo_mvir'],\
mass_bins)
In [268]:
wp_hod = cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False, RSD=False)
print wp_hod
#wp_hod = cat.calc_xi(rp_bins, do_jackknife=False)
In [269]:
from halotools.mock_observables import return_xyz_formatted_array
In [270]:
#sham_pos = np.c_[galaxy_catalog['halo_%s_x'%shuffle_type],\
# galaxy_catalog['halo_%s_y'%shuffle_type],\
# galaxy_catalog['halo_%s_z'%shuffle_type]]
sham_pos = np.c_[galaxy_catalog['halo_x'],\
galaxy_catalog['halo_y'],\
galaxy_catalog['halo_z']]
distortion_dim = 'z'
v_distortion_dim = galaxy_catalog['halo_v%s' % distortion_dim]
# apply redshift space distortions
#sham_pos = return_xyz_formatted_array(sham_pos[:,0],sham_pos[:,1],sham_pos[:,2], velocity=v_distortion_dim, \
# velocity_distortion_dimension=distortion_dim, period=cat.Lbox)
wp_sham = wp(sham_pos*cat.h, rp_bins, 40.0*cat.h, period=cat.Lbox*cat.h, num_threads=1)
print wp_sham
#wp_sham = tpcf(sham_pos*h, rp_bins, period=400.0*h, num_threads=1)
#wp_sham = np.log10(wp(sham_pos, rp_bins, 40.0, period=400.0, num_threads=1))
In [271]:
#np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sham_%s_%s_wp.npy'%(mag_type, shuffle_type), wp_sham)
#np.savetxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sham_vpeak_shuffled_nd.npy',np.array([cat.calc_analytic_nd()]) )
In [272]:
plt.plot(mass_bin_centers, cen_hod_sham+sat_hod_sham, label = 'SHAM')
plt.plot(mass_bin_centers, cen_hod_mock+sat_hod_mock, label = 'HOD Fit')
plt.legend(loc='best')
plt.xlabel(r"$\log{M_{vir}}$")
plt.ylabel(r"$\log{<N|M>}$")
plt.loglog()
plt.show();
In [273]:
plt.plot(mass_bin_centers, sat_hod_sham, label = 'SHAM')
plt.plot(mass_bin_centers, sat_hod_mock, label = 'HOD')
plt.legend(loc='best')
plt.vlines(PMASS*min_ptcl,0, 100)
plt.loglog()
plt.show();
In [274]:
plt.plot(mass_bin_centers, cen_hod_sham, label = 'SHAM')
plt.plot(mass_bin_centers, cen_hod_mock, label = 'HOD')
plt.legend(loc='best')
plt.vlines(PMASS*min_ptcl,0, 100)
plt.loglog()
plt.show();
In [275]:
sham_nd = len(galaxy_catalog)/(cat.Lbox*0.7)**3
hod_nd = cat.calc_analytic_nd()
In [276]:
print sham_nd/hod_nd
In [277]:
fs_cat = cat_dict[cosmo_params['simname']](**cosmo_params)#construct the specified catalog!
fs_cat.load_catalog(1.0)
fs_cat.load_model(1.0, HOD=(FSAssembiasTabulatedCens, FSAssembiasTabulatedSats), hod_kwargs = {'prim_haloprop_vals': mass_bin_centers,
#'sec_haloprop_key': 'halo_%s'%(mag_type),
'cen_hod_vals':cen_hod_sham,
'sat_hod_vals':sat_hod_sham})
In [293]:
plt.plot(rpoints, wp_sham/wp_sham, label = 'SHAM', color = 'k')
plt.plot(rpoints, wp_hod/wp_sham, label = 'Free Split', color = 'b')
names = ['mean_occupation_satellites_assembias_param1',
'mean_occupation_centrals_assembias_param1',
#'mean_occupation_satellites_assembias_split1',
'mean_occupation_centrals_assembias_split1']
MAP = np.array([0.0, 0.0,0.5, 0.5])
params = dict(zip(names, MAP))
fs_cat.populate(params)
wp_hod_noab = fs_cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False,n_cores =1 ,RSD = False )
#wp_hod_noab = cat.calc_xi(rp_bins, do_jackknife=False,n_cores =1 )
plt.plot(rpoints, wp_hod_noab/wp_sham, label = 'No AB', color = 'g')
MAP = np.array([-0.5, 1.0,0.5, 0.5])
params = dict(zip(names, MAP))
fs_cat.populate(params)
wp_hod_norm_split = fs_cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False,n_cores =1 ,RSD = False )
#wp_hod_noab = cat.calc_xi(rp_bins, do_jackknife=False,n_cores =1 )
plt.plot(rpoints, wp_hod_norm_split/wp_sham, label = 'Default Split', color = 'r')
#plt.loglog()
plt.xscale('log')
#plt.ylim([-0.2, 3.5])
plt.legend(loc='best')
plt.xlabel(r"$r_p$", fontsize = 20)
plt.ylabel(r"$w_p(r_p)/w_{SHAM}(r_p)$", fontsize = 20)
plt.xlim([0.1, 20])
plt.ylim([0.75, 1.25])
plt.show()
In [294]:
wp_sham
Out[294]:
In [295]:
c.comparison.bic()
Out[295]:
In [296]:
wp_hod
Out[296]:
In [297]:
np.log10(wp_hod_noab)
Out[297]:
In [298]:
new_params = {'mean_occupation_centrals_assembias_param1': 0.84999999999999998,
'mean_occupation_centrals_assembias_split1': 0.84999999999999998,
'mean_occupation_satellites_assembias_param1': -0.29999999999999999,
'mean_occupation_satellites_assembias_split1': 0.90000000000000002}
In [299]:
fs_cat.populate(new_params)
print np.log10(fs_cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False,n_cores =1 ,RSD = False ))
In [300]:
plt.figure
plt.xscale('log')
plt.legend(loc='best',fontsize = 15)
plt.xlim([1e-1, 15e0]);
plt.ylim([0.8,1.2])
plt.xlabel(r'$r$',fontsize = 15)
plt.ylabel(r'$\xi(r)$',fontsize = 15)
plt.show()
In [301]:
plt.figure(figsize=(10,8))
#plt.plot(rpoints, wp_sham/wp_sham, label = 'SHAM')
plt.plot(rpoints, wp_hod/wp_sham, label = 'HOD Fit')
plt.xscale('log')
plt.legend(loc='best',fontsize = 15)
plt.xlim([1e-1, 30e0]);
#plt.ylim([1,15000])
plt.xlabel(r'$r$',fontsize = 15)
plt.ylabel(r'$\xi(r)$',fontsize = 15)
plt.show()
In [302]:
print wp_sham/wp_hod
In [303]:
print wp_sham
print wp_hod
In [304]:
from pearce.emulator import OriginalRecipe, ExtraCrispy
In [305]:
training_dir = '/u/ki/swmclau2/des/PearceLHC_wp_z_sham_free_split_no_rsd/'
#training_dir = '/u/ki/swmclau2/des/PearceLHC_wp_z_sham_tabulated_no_split/'
em_method = 'gp'
split_method = 'random'
load_fixed_params = {'z':0.0}
emu = ExtraCrispy(training_dir,10, 2, split_method, method=em_method, fixed_params=load_fixed_params)
In [306]:
names
Out[306]:
In [307]:
plt.figure(figsize=(10,8))
for i in xrange(25):
MAP = chain[np.random.randint(chain.shape[0]), :]
params = dict(zip(names, MAP))
params.update({'mean_occupation_satellites_assembias_split1':0.5})
print params
#params['f_c'] = 1.0
#cat.populated_once = False
#cat.populate(params)
#wp_hod = cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False,n_cores =1, RSD = False)
wp_emu = 10**emu.emulate_wrt_r(params, rpoints)[0]
#wp_hod = cat.calc_xi(rp_bins, do_jackknife=False,n_cores =1 )
plt.plot(rpoints, wp_emu/wp_sham, alpha = 0.4)
#plt.plot(rpoints, wp_sham, label = 'SHAM')
names = ['mean_occupation_satellites_assembias_param1',
'mean_occupation_centrals_assembias_param1',
'mean_occupation_satellites_assembias_split1',
'mean_occupation_centrals_assembias_split1']
MAP = np.array([0.0, 0.0,0.5, 0.5])
params = dict(zip(names, MAP))
print params
fs_cat.populate(params)
wp_hod_noab = fs_cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False,n_cores =1 ,RSD = False )
#wp_hod_noab = cat.calc_xi(rp_bins, do_jackknife=False,n_cores =1 )
plt.plot(rpoints, wp_hod_noab/wp_sham, ls = ':', label = 'No AB')
MAP = np.array([-0.5, 1.0,0.5, 0.5])
params = dict(zip(names, MAP))
fs_cat.populate(params)
wp_hod_norm_split = fs_cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False,n_cores =1 ,RSD = False )
#wp_hod_noab = cat.calc_xi(rp_bins, do_jackknife=False,n_cores =1 )
plt.plot(rpoints, wp_hod_norm_split/wp_sham, ls = ':', label = 'Default Split')
#plt.loglog()
plt.xscale('log')
plt.legend(loc='best',fontsize = 15)
plt.xlim([1e-1, 5e0]);
plt.ylim([0.75,1.25]);
plt.xlabel(r'$r$',fontsize = 15)
plt.ylabel(r'$\xi(r)/\xi_{SHAM}(r)$',fontsize = 15)
plt.show()
In [ ]:
plt.figure(figsize=(10,8))
for i in xrange(25):
MAP = chain[np.random.randint(chain.shape[0]), :]
params = dict(zip(names, MAP))
#params['f_c'] = 1.0
#cat.populated_once = False
#cat.populate(params)
#wp_hod = cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False,n_cores =1, RSD = False)
wp_emu = 10**emu.emulate_wrt_r(params, rpoints)[0]
#wp_hod = cat.calc_xi(rp_bins, do_jackknife=False,n_cores =1 )
plt.plot(rpoints, wp_emu, alpha = 0.4)
#plt.plot(rpoints, wp_sham, label = 'SHAM')
names = ['mean_occupation_satellites_assembias_param1',
'mean_occupation_centrals_assembias_param1',
'mean_occupation_satellites_assembias_split1',
'mean_occupation_centrals_assembias_split1']
MAP = np.array([0.0, 0.0,0.5, 0.5])
params = dict(zip(names, MAP))
print params
fs_cat.populate(params)
wp_hod_noab = fs_cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False,n_cores =1 ,RSD = False )
#wp_hod_noab = cat.calc_xi(rp_bins, do_jackknife=False,n_cores =1 )
plt.plot(rpoints, wp_hod_noab, ls = ':', label = 'No AB')
MAP = np.array([-0.5, 1.0,0.5, 0.5])
params = dict(zip(names, MAP))
fs_cat.populate(params)
wp_hod_norm_split = fs_cat.calc_wp(rp_bins, pi_max = 40, do_jackknife=False,n_cores =1 ,RSD = False )
#wp_hod_noab = cat.calc_xi(rp_bins, do_jackknife=False,n_cores =1 )
plt.plot(rpoints, wp_hod_norm_split, ls = ':', label = 'Default Split')
plt.plot(rpoints, wp_sham, lw = 3, label = 'SHAM')
plt.loglog()
#plt.xscale('log')
plt.legend(loc='best',fontsize = 15)
plt.xlim([1e-1, 5e0]);
#plt.ylim([0.75,1.25]);
plt.xlabel(r'$r$',fontsize = 15)
plt.ylabel(r'$\xi(r)/\xi_{SHAM}(r)$',fontsize = 15)
plt.show()
In [ ]:
print wp_hod_noab
In [ ]:
names
In [ ]:
#mock_wp = cat.calc_wp(rp_bins, RSD= False)
MAP = np.array([ -1.0, 1.0,0.5,0.5])
params = dict(zip(names, MAP))
#print params.keys()
mock_wps = []
#mock_wps_1h, mock_wps_2h = [],[]
#mock_nds = []
split = np.linspace(0.1, 0.9, 4)
#split_abcissa = [10**9, 10**13, 10**16]
for p in split:
params['mean_occupation_centrals_assembias_split1'] = p
params['mean_occupation_satellites_assembias_split1'] = p
fs_cat.populate(params)
mock_pos = np.c_[fs_cat.model.mock.galaxy_table['x'],\
fs_cat.model.mock.galaxy_table['y'],\
fs_cat.model.mock.galaxy_table['z']]
mock_wps.append(wp(mock_pos*cat.h, rp_bins ,40.0*cat.h, period=cat.Lbox*cat.h, num_threads=1))
mock_wps = np.array(mock_wps)
In [ ]:
plt.figure(figsize=(10,8))
#avg = mock_wps.mean(axis = 0)
for p, mock_wp in zip(split, mock_wps):
plt.plot(rpoints, mock_wp/wp_sham, label = 'p = %.2f'%p)
#pass
plt.plot(rpoints, noab_wp/wp_sham, label = 'No AB', ls = ':')
#plt.loglog()
plt.xscale('log')
plt.legend(loc='best',fontsize = 15)
plt.xlim([1e-1, 5e0]);
plt.ylim([0.75,1.25]);
plt.xlabel(r'$r$',fontsize = 15)
plt.ylabel(r'$\xi(r)/\xi_{SHAM}(r)$',fontsize = 15)
plt.show()
In [ ]:
In [ ]: