In [1]:
%matplotlib inline
from __future__ import print_function
import tellurium as te
import numpy as np
r_item = te.loada("""
model stochastic_item()
unit substance = 1 item;
J1_f : S1 => S2; kf*S1;
J1_b : S2 => S1; kb*S2;
kf = 0.2; kb = 0.1;
S1 = 100; S2 = 0;
end
""")
r_mole = te.loada("""
model stochastic_mole()
unit substance = 1 mole;
J1_f : S1 => S2; kf*S1;
J1_b : S2 => S1; kb*S2;
kf = 0.2; kb = 0.1;
S1 = 100; S2 = 0;
end
""")
for name in ['r_item', 'r_mole']:
r = globals()[name]
# run some stochastic simulations with the model
r.setIntegrator('gillespie')
r.setSeed(1234)
results = []
for k in range(1, 50):
r.reset()
s = r.simulate(0, 40)
results.append(s)
r.plot(s, show=False, loc=None, color='black', alpha=0.7)
# run the determenistic version
r.setIntegrator('cvode')
r.reset()
s = r.simulate(0, 40)
r.plot(s, show=True, alpha=0.7, title=name)
# save SBML
r.exportToSBML("{}.xml".format(name), current=False)
In [ ]: