3 class discrimination of trialtype.

Using sklean and skflow. Comparison to each of the 4 mice


In [163]:
import tensorflow as tf
import tensorflow.contrib.learn as skflow
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
import seaborn as sns 
import random
from scipy.signal import resample
from scipy.stats import zscore
from scipy import interp
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn import metrics
from sklearn import cross_validation

In [612]:
# data loading function
def data_loader(mouse_name):
    theta = pd.read_csv('~/work/whiskfree/data/theta_' + mouse_name + '.csv',header=None)
    kappa = pd.read_csv('~/work/whiskfree/data/kappa_' + mouse_name + '.csv',header=None)
    tt = pd.read_csv('~/work/whiskfree/data/trialtype_' + mouse_name + '.csv',header=None)
    ch = pd.read_csv('~/work/whiskfree/data/choice_' + mouse_name + '.csv',header=None)

    return theta, kappa, tt, ch

def data_parser(theta,kappa,tt,ch):
    
    theta_r = np.array([[resample(theta.values.squeeze()[i,950:1440],50)] for i in range(0,theta.shape[0])])
    theta_r = zscore(theta_r.squeeze(),axis=None)

    kappa_r = np.array([[resample(kappa.values.squeeze()[i,950:1440],50)] for i in range(0,kappa.shape[0])])
    kappa_r = zscore(kappa_r.squeeze(),axis=None)

    kappa_df = pd.DataFrame(kappa_r)
    theta_df = pd.DataFrame(theta_r)

    both_df = pd.concat([theta_df,kappa_df],axis=1)
    
    clean1 = np.nan_to_num(tt) !=0
    clean2 = np.nan_to_num(ch) !=0
    clean = clean1&clean2
    tt_c = tt[clean].values

    ch_c = ch[clean].values

    # tt_c = tt[tt.values !=0|3].values
    both = both_df[clean]
    # both_c = both[clean.squeeze(),:]
    both_c = both.values
    
    # keeping one hot vector for now (incase we want it later)
#     labs = np.eye(3)[tt_c.astype(int)-1]
    # y[np.arange(3), a] = 1
#     labs = labs.squeeze()
    
    return both_c, tt_c, ch_c, clean

In [466]:
mouse_name = '32'
theta, kappa, tt, ch = data_loader(mouse_name)
fig, ax = plt.subplots(1,2,figsize=(20,5))
_ = ax[0].plot(theta[:100].T)
_ = ax[1].plot(kappa[:100].T)



In [613]:
both_c, tt_c, ch_c, clean = data_parser(theta,kappa,tt,ch)
_ = plt.plot(both_c[:100].T)



In [614]:
# Let's use 20% of the data for testing and 80% for training
trainsize = int(len(both_c) * 0.8)
testsize = len(both_c) - trainsize
print('Desired training/test set sizes:',trainsize, testsize)

subset = random.sample(range(len(both_c)),trainsize)
fullrange = range(0,len(both_c))
toexclude = np.delete(fullrange,subset)
traindata = both_c[subset,:]
# trainlabs = labs[subset,:]
testdata = np.delete(both_c,subset,axis=0)
# testlabs = np.delete(labs,subset,axis=0)

# non one-hot style labels
trainlabs1D = tt_c[subset].squeeze() # Change this to ch_c to classify choice instead
testlabs1D = np.delete(tt_c,subset)

print('training set shape:',traindata.shape)
print('test set shape:',testdata.shape)
# print('training labels shape:',trainlabs.shape)
# print('test labels shape:',testlabs.shape)
print('1D train label shape:', trainlabs1D.shape)
print('1D test label shape:', testlabs1D.shape)


Desired training/test set sizes: 1640 410
training set shape: (1640, 100)
test set shape: (410, 100)
1D train label shape: (1640,)
1D test label shape: (410,)

In [615]:
# Define models
lr = LogisticRegression()
NN = skflow.TensorFlowDNNClassifier(hidden_units=[100], n_classes=3,batch_size=128, steps=1000, optimizer = 'Adam',learning_rate=0.001,verbose=0)

In [622]:
# ROC mouse + 2 MODELS of all trials with binarised labels
fpr = dict()
tpr = dict()
roc_auc = dict()
n_classes = 3


trialtypes = ['Anterior Pole','Posterior Pole','No Go'] # 32-34
# trialtypes = ['Posterior Pole','Anterior Pole','No Go'] # 36

# Change the model/labels here 
preds = cross_validation.cross_val_predict(lr, both_c, ch_c.squeeze()-1, cv=5)
preds_NN = cross_validation.cross_val_predict(NN, both_c, ch_c.squeeze()-1, cv=5)

with plt.style.context('fivethirtyeight'):
    fig, ax = plt.subplots(1,3,figsize=(15,6))

    # MOUSE
    mouse_choice = ch[clean.squeeze()].values
    n_classes = 3
    for i in range(0,3):
        these_trials = tt_c == i+1
        binary_trials = np.zeros_like(tt_c.squeeze())    
        binary_trials[these_trials.squeeze()] = 1

        wrong = mouse_choice != i+1
        binary_preds = np.ones_like(mouse_choice)
        binary_preds[wrong] = 0
        fpr[i], tpr[i], thresholds = metrics.roc_curve(binary_trials,binary_preds)
        roc_auc[i] = metrics.auc(fpr[i], tpr[i])
        ax[0].plot(fpr[i], tpr[i], lw=1, label='ROC ' + trialtypes[i] +' (area = %0.2f)' % (roc_auc[i]))


    # Compute macro-average ROC following sklearn docs

    # First aggregate all false positive rates
    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
    # Then interpolate all ROC curves at this points
    mean_tpr = np.zeros_like(all_fpr)
    for i in range(n_classes):
        mean_tpr += interp(all_fpr, fpr[i], tpr[i])
    # Finally average it and compute AUC
    mean_tpr /= n_classes
    fpr["macro"] = all_fpr
    tpr["macro"] = mean_tpr
    roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"])
    ax[0].plot(fpr["macro"], tpr["macro"],
             label='macro-average ROC curve (area = {0:0.2f})'''.format(roc_auc["macro"]),linewidth=2)

    ax[0].plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Chance')
    ax[0].legend(loc=4)
    ax[0].set_title('Mouse ' + mouse_name)
    ax[0].set_xlim([-0.2,1.1])
    ax[0].set_ylim([-0.2,1.1])

    # Logistic Regression
    for i in range(0,3):
        these_trials = tt_c == i+1
        binary_trials = np.zeros_like(tt_c.squeeze())    
        binary_trials[these_trials.squeeze()] = 1

        wrong = preds != i
        binary_preds = np.ones_like(preds)
        binary_preds[wrong] = 0
        fpr[i], tpr[i], thresholds = metrics.roc_curve(binary_trials,binary_preds)
        roc_auc[i] = metrics.auc(fpr[i], tpr[i])
        ax[1].plot(fpr[i], tpr[i], lw=1, label='ROC ' + trialtypes[i] +' (area = %0.2f)' % (roc_auc[i]))


    # Compute macro-average ROC following sklearn docs

    # First aggregate all false positive rates
    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
    # Then interpolate all ROC curves at this points
    mean_tpr = np.zeros_like(all_fpr)
    for i in range(n_classes):
        mean_tpr += interp(all_fpr, fpr[i], tpr[i])
    # Finally average it and compute AUC
    mean_tpr /= n_classes
    fpr["macro"] = all_fpr
    tpr["macro"] = mean_tpr
    roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"])
    ax[1].plot(fpr["macro"], tpr["macro"],
             label='macro-average ROC curve (area = {0:0.2f})'''.format(roc_auc["macro"]),linewidth=2)

    ax[1].plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Chance')
    ax[1].legend(loc=4)
    ax[1].set_title('Logistic Regression')
    ax[1].set_xlim([-0.2,1.1])
    ax[1].set_ylim([-0.2,1.1])
    
    
    # Neural Network
    for i in range(0,3):
        these_trials = tt_c == i+1
        binary_trials = np.zeros_like(tt_c.squeeze())    
        binary_trials[these_trials.squeeze()] = 1

        wrong = preds_NN != i
        binary_preds = np.ones_like(preds)
        binary_preds[wrong] = 0
        fpr[i], tpr[i], thresholds = metrics.roc_curve(binary_trials,binary_preds)
        roc_auc[i] = metrics.auc(fpr[i], tpr[i])
        ax[2].plot(fpr[i], tpr[i], lw=1, label='ROC ' + trialtypes[i] +' (area = %0.2f)' % (roc_auc[i]))


    # Compute macro-average ROC following sklearn docs

    # First aggregate all false positive rates
    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
    # Then interpolate all ROC curves at this points
    mean_tpr = np.zeros_like(all_fpr)
    for i in range(n_classes):
        mean_tpr += interp(all_fpr, fpr[i], tpr[i])
    # Finally average it and compute AUC
    mean_tpr /= n_classes
    fpr["macro"] = all_fpr
    tpr["macro"] = mean_tpr
    roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"])
    ax[2].plot(fpr["macro"], tpr["macro"],
             label='macro-average ROC curve (area = {0:0.2f})'''.format(roc_auc["macro"]),linewidth=2)

    ax[2].plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Chance')
    ax[2].legend(loc=4)
    ax[2].set_title('Neural Network')
    ax[2].set_xlim([-0.2,1.1])
    ax[2].set_ylim([-0.2,1.1])
    
# plt.savefig('figs/ROC_allthree_trailtype_preds_'+ mouse_name +'.png')



In [617]:
# Softmax probability version
# TO DO: change this to utilise all data in cross val by setting up custom function.

fpr = dict()
tpr = dict()
roc_auc = dict()
n_classes = 3

probs = lr.fit(traindata,trainlabs1D-1).predict_proba(testdata)
probs_NN = NN.fit(traindata,trainlabs1D-1).predict_proba(testdata)

with plt.style.context('fivethirtyeight'):
    fig, ax = plt.subplots(1,3, figsize=(15,5))

    # MOUSE
    mouse_choice = ch[clean.squeeze()].values
    n_classes = 3
    for i in range(0,3):
        these_trials = tt_c == i+1
        binary_trials = np.zeros_like(tt_c.squeeze())    
        binary_trials[these_trials.squeeze()] = 1

        wrong = mouse_choice != i+1
        binary_preds = np.ones_like(mouse_choice)
        binary_preds[wrong] = 0
        fpr[i], tpr[i], thresholds = metrics.roc_curve(binary_trials,binary_preds)
        roc_auc[i] = metrics.auc(fpr[i], tpr[i])
        ax[0].plot(fpr[i], tpr[i], lw=1, label='ROC ' + trialtypes[i] +' (area = %0.2f)' % (roc_auc[i]))


    # Compute macro-average ROC following sklearn docs

    # First aggregate all false positive rates
    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
    # Then interpolate all ROC curves at this points
    mean_tpr = np.zeros_like(all_fpr)
    for i in range(n_classes):
        mean_tpr += interp(all_fpr, fpr[i], tpr[i])
    # Finally average it and compute AUC
    mean_tpr /= n_classes
    fpr["macro"] = all_fpr
    tpr["macro"] = mean_tpr
    roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"])
    ax[0].plot(fpr["macro"], tpr["macro"],
             label='macro-average ROC curve (area = {0:0.2f})'''.format(roc_auc["macro"]),linewidth=2)
    ax[0].plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Chance')
    ax[0].legend(loc=4)
    ax[0].set_title('Mouse ' + mouse_name)
    ax[0].set_xlim([-0.2,1.1])
    ax[0].set_ylim([-0.2,1.1])
    
    # Logistic Regression
    for i in range(0,3):
        these_trials = testlabs1D == i+1
        binary_trials = np.zeros_like(testlabs1D.squeeze())
        binary_trials[these_trials.squeeze()] = 1

        fpr[i], tpr[i], thresholds = metrics.roc_curve(binary_trials,probs[:,i])
        roc_auc[i] = metrics.auc(fpr[i], tpr[i])
        ax[1].plot(fpr[i], tpr[i], lw=1, label='ROC ' + trialtypes[i] +' (area = %0.2f)' % (roc_auc[i]))


    # Compute macro-average ROC following sklearn docs
    # First aggregate all false positive rates
    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
    # Then interpolate all ROC curves at this points
    mean_tpr = np.zeros_like(all_fpr)
    for i in range(n_classes):
        mean_tpr += interp(all_fpr, fpr[i], tpr[i])
    # Finally average it and compute AUC
    mean_tpr /= n_classes
    fpr["macro"] = all_fpr
    tpr["macro"] = mean_tpr
    roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"])
    ax[1].plot(fpr["macro"], tpr["macro"],label='macro-average ROC curve (area = {0:0.2f})'''.format(roc_auc["macro"]),linewidth=2)
    ax[1].plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Chance')
    ax[1].legend(loc=4)
    ax[1].set_title('Logistic Regression')
    ax[1].set_xlim([-0.2,1.1])
    ax[1].set_ylim([-0.2,1.1])

    # Neural Network
    for i in range(0,3):
        these_trials = testlabs1D == i+1
        binary_trials = np.zeros_like(testlabs1D.squeeze())
        binary_trials[these_trials.squeeze()] = 1

        fpr[i], tpr[i], thresholds = metrics.roc_curve(binary_trials,probs_NN[:,i])
        roc_auc[i] = metrics.auc(fpr[i], tpr[i])
        ax[2].plot(fpr[i], tpr[i], lw=1, label='ROC ' + trialtypes[i] +' (area = %0.2f)' % (roc_auc[i]))


    # Compute macro-average ROC following sklearn docs
    # First aggregate all false positive rates
    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
    # Then interpolate all ROC curves at this points
    mean_tpr = np.zeros_like(all_fpr)
    for i in range(n_classes):
        mean_tpr += interp(all_fpr, fpr[i], tpr[i])
    # Finally average it and compute AUC
    mean_tpr /= n_classes
    fpr["macro"] = all_fpr
    tpr["macro"] = mean_tpr
    roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"])
    ax[2].plot(fpr["macro"], tpr["macro"],label='macro-average ROC curve (area = {0:0.2f})'''.format(roc_auc["macro"]),linewidth=2)
    ax[2].plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Chance')
    ax[2].legend(loc=4)
    ax[2].set_title('Neural Network')
    ax[2].set_xlim([-0.2,1.1])
    ax[2].set_ylim([-0.2,1.1])

# plt.savefig('figs/ROC_both_trialtype_3probs_'+ mouse_name +'.png')



In [623]:
# TRIALTYPE
# # Confusion matrices. Mouse vs model
# mouse_choice = ch[clean.squeeze()].values
# cm_m = confusion_matrix(tt_c,mouse_choice)

# # Confusion matrices
# cm_lr = confusion_matrix(tt_c,preds+1)
# cm_NN = confusion_matrix(tt_c,preds_NN+1)

# CHOICE
# Confusion matrices. Mouse vs model
# mouse_choice = ch_c #[clean.squeeze()].values
label = ch_c
cm_m = confusion_matrix(label,ch_c)

# Confusion matrices
cm_lr = confusion_matrix(label,preds+1)
cm_NN = confusion_matrix(label,preds_NN+1)


with sns.axes_style("white"):
    fig,ax = plt.subplots(1,3,figsize=(15,6))


    ax[0].imshow(cm_m,interpolation='none',cmap="Greys")
    ax[0].set_title('Mouse ' + mouse_name + '. ' + str(int(100 * accuracy_score(label,ch_c))) + '%')
    ax[0].set_ylabel('True label')
    ax[0].set_xlabel('Predicted label')
    tick_marks = np.arange(len(trialtypes))
    ax[0].set_xticks(tick_marks, trialtypes)
    ax[0].set_yticks(tick_marks, trialtypes)
    
    for i in range(0,3):
        for j in range(0,3):
            ax[0].text(j, i, cm_m[i,j], va='center', ha='center',bbox=dict(facecolor='white',edgecolor='white', alpha=0.5))

    ax[1].imshow(cm_lr,interpolation='none',cmap="Greys")
    ax[1].set_title('Logistic Regression' + '. ' + str(int(100 * accuracy_score(label,preds+1))) + '%')
    ax[1].set_ylabel('True label')
    ax[1].set_xlabel('Predicted label')
    
    for i in range(0,3):
        for j in range(0,3):
            ax[1].text(j, i, cm_lr[i,j], va='center', ha='center',bbox=dict(facecolor='white',edgecolor='white', alpha=0.5))

    ax[2].imshow(cm_NN,interpolation='none',cmap="Greys")
    ax[2].set_title('Neural Network' + '. ' + str(int(100 * accuracy_score(label,preds_NN+1))) + '%')
    ax[2].set_ylabel('True label')
    ax[2].set_xlabel('Predicted label')
    
    for i in range(0,3):
        for j in range(0,3):
            ax[2].text(j, i, cm_NN[i,j], va='center', ha='center',bbox=dict(facecolor='white',edgecolor='white', alpha=0.5))

            
# plt.savefig('figs/Cmatrix_lr_trialtype_choice_'+ mouse_name +'.png')



In [624]:
# preds = cross_validation.cross_val_predict(lr, both_c, tt_c.squeeze()-1, cv=5)
# plt.hist(preds)
# x = tt_c[~np.isnan(tt_c)]
# x.shape
# plt.hist(np.nan_to_num(tt))
with plt.style.context('fivethirtyeight'):
    fig, ax = plt.subplots(1,3, figsize=(12,3))
    ax[0].hist(tt_c)
#     ax[0].hist(tt[clean.squeeze()].values) # when predicting choice
    ax[0].set_title('Trialtype')
#     ax[0].set_xticks([1,2,3],trialtypes)
    ax[0].set_xlim([0.5,3.5])
    
    ax[1].hist(ch_c)
    ax[1].set_title('Choice')
    ax[1].set_xlim([0.5,3.5])
    
    ax[2].hist(preds_NN+1)
    ax[2].set_title('NN choice')
    ax[2].set_xlim([0.5,3.5])
    

plt.suptitle('Mouse ' + mouse_name, x=0.5,y=1.1,fontsize=15)
# plt.savefig('figs/choice_number_'+ mouse_name +'.png')


Out[624]:
<matplotlib.text.Text at 0x162eb5160>

In [625]:
# print('Mouse '+ mouse_name + '. '+ accuracy_score(tt_c,mouse_choice) + '%')
# int(100 *accuracy_score(tt_c,mouse_choice))
# print('Mouse ' + mouse_name + '. ' + str(int(100 * accuracy_score(tt_c,mouse_choice))) + '%')
trialtypes = ['Anterior Pole','Posterior Pole','No Go']

print(metrics.classification_report(label,ch_c,target_names=trialtypes))
print('Weighted f1_score: ',metrics.f1_score(label,mouse_choice,average='weighted'))
print(metrics.classification_report(label,preds_NN+1,target_names=trialtypes))
print('Weighted f1_score: ',metrics.f1_score(label,preds_NN+1,average='weighted'))


                precision    recall  f1-score   support

 Anterior Pole       1.00      1.00      1.00       746
Posterior Pole       1.00      1.00      1.00       650
         No Go       1.00      1.00      1.00       654

   avg / total       1.00      1.00      1.00      2050

Weighted f1_score:  1.0
                precision    recall  f1-score   support

 Anterior Pole       0.63      0.53      0.58       746
Posterior Pole       0.50      0.44      0.47       650
         No Go       0.47      0.60      0.53       654

   avg / total       0.54      0.53      0.53      2050

Weighted f1_score:  0.527602929973

In [580]:
clean1 = np.nan_to_num(tt) !=0
clean2 = np.nan_to_num(ch) !=0
tt_c2 = tt[clean1&clean2].values
ch_c2 = ch[clean1&clean2].values
fig,ax = plt.subplots(1,2)
ax[0].hist(tt_c2)
ax[1].hist(ch_c2)


Out[580]:
(array([ 746.,    0.,    0.,    0.,    0.,  650.,    0.,    0.,    0.,  654.]),
 array([ 1. ,  1.2,  1.4,  1.6,  1.8,  2. ,  2.2,  2.4,  2.6,  2.8,  3. ]),
 <a list of 10 Patch objects>)

In [605]:
theta_r = np.array([[resample(theta.values.squeeze()[i,950:1440],50)] for i in range(0,theta.shape[0])])
    theta_r = zscore(theta_r.squeeze(),axis=None)

    kappa_r = np.array([[resample(kappa.values.squeeze()[i,950:1440],50)] for i in range(0,kappa.shape[0])])
    kappa_r = zscore(kappa_r.squeeze(),axis=None)

    kappa_df = pd.DataFrame(kappa_r)
    theta_df = pd.DataFrame(theta_r)

    both_df = pd.concat([theta_df,kappa_df],axis=1)

In [610]:
clean1 = np.nan_to_num(tt) !=0
clean2 = np.nan_to_num(ch) !=0
clean = clean1&clean2

# tt_c = tt[tt.values !=0|3].values
both = both_df[clean]
# both_c = both[clean.squeeze(),:]
both_c = both.values
both_c.shape


Out[610]:
(2050, 100)

In [646]:
from sklearn.lda import LDA
from sklearn.decomposition import PCA

trialtypes = ['Anterior Pole','Posterior Pole','No Go']

pca = PCA(n_components=2)
X_r = pca.fit(both_c).transform(both_c)

lda = LDA(n_components=2)
X_r2 = lda.fit(both_c, tt_c).transform(both_c)

# Percentage of variance explained for each components
print('explained variance ratio (first two components): %s'
      % str(pca.explained_variance_ratio_))

plt.figure()
for c, i, trialtypes in zip("rgb", [0, 1, 2], trialtypes):
    plt.scatter(X_r[tt_c.ravel() == i+1, 0], X_r[tt_c.ravel() == i+1, 1], c=c, label=trialtypes)
plt.legend()
plt.title('PCA')

trialtypes = ['Anterior Pole','Posterior Pole','No Go']
plt.figure()
for c, i, trialtypes in zip("rgb", [0, 1, 2], trialtypes):
    plt.scatter(X_r2[tt_c.squeeze() == i+1, 0], X_r2[tt_c.squeeze() == i+1, 1], c=c, label=trialtypes)
plt.legend()
plt.title('LDA')


/Users/mathew/miniconda/envs/py35/lib/python3.5/site-packages/sklearn/utils/validation.py:515: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
explained variance ratio (first two components): [ 0.55555146  0.08664667]
Out[646]:
<matplotlib.text.Text at 0x165f1e1d0>

In [653]:
lda.score(both_c,tt_c)


Out[653]:
0.55268292682926834

In [183]:
# Logistic regression (once)
lr = LogisticRegression()
lr.fit(traindata,trainlabs1D)
# lr.fit(both_c,tt_c.squeeze())

print(accuracy_score(testlabs1D,lr.predict(testdata)))
print(accuracy_score(tt_c.squeeze(),lr.predict(both_c)))


0.504249291785
0.610544217687

In [184]:
# Logistic regression with 5-fold cross validation
lr = LogisticRegression()
scores_lr = cross_validation.cross_val_score(lr, both_c, tt_c.squeeze(), cv=5,scoring='accuracy')

print(scores_lr)
print(np.mean(scores_lr))


[ 0.5480226   0.55932203  0.50991501  0.52840909  0.50712251]
0.530558248993

In [196]:
# 2 layer NN
import tensorflow.contrib.learn as skflow

NN = skflow.TensorFlowDNNClassifier(hidden_units=[50, 50], n_classes=3,batch_size=128, steps=1000, optimizer = 'Adam',learning_rate=0.001,verbose=0)

scores_NN = cross_validation.cross_val_score(NN, both_c, tt_c.squeeze()-1, cv=5,scoring='f1_weighted')

print(scores_NN)
print(np.mean(scores_NN))


Step #100, epoch #8, avg. train loss: 0.92758
Step #200, epoch #16, avg. train loss: 0.67038
Step #300, epoch #25, avg. train loss: 0.55278
Step #400, epoch #33, avg. train loss: 0.45024
Step #500, epoch #41, avg. train loss: 0.38716
Step #600, epoch #50, avg. train loss: 0.32412
Step #700, epoch #58, avg. train loss: 0.29467
Step #800, epoch #66, avg. train loss: 0.25110
Step #900, epoch #75, avg. train loss: 0.22444
Step #1000, epoch #83, avg. train loss: 0.21086
Step #100, epoch #8, avg. train loss: 0.92909
Step #200, epoch #16, avg. train loss: 0.68200
Step #300, epoch #25, avg. train loss: 0.56637
Step #400, epoch #33, avg. train loss: 0.45796
Step #500, epoch #41, avg. train loss: 0.39562
Step #600, epoch #50, avg. train loss: 0.33806
Step #700, epoch #58, avg. train loss: 0.30751
Step #800, epoch #66, avg. train loss: 0.26710
Step #900, epoch #75, avg. train loss: 0.24038
Step #1000, epoch #83, avg. train loss: 0.22661
Step #100, epoch #8, avg. train loss: 0.94208
Step #200, epoch #16, avg. train loss: 0.68829
Step #300, epoch #25, avg. train loss: 0.54336
Step #400, epoch #33, avg. train loss: 0.46410
Step #500, epoch #41, avg. train loss: 0.39993
Step #600, epoch #50, avg. train loss: 0.32984
Step #700, epoch #58, avg. train loss: 0.28884
Step #800, epoch #66, avg. train loss: 0.24457
Step #900, epoch #75, avg. train loss: 0.22282
Step #1000, epoch #83, avg. train loss: 0.20779
Step #100, epoch #8, avg. train loss: 0.92933
Step #200, epoch #16, avg. train loss: 0.61408
Step #300, epoch #25, avg. train loss: 0.47380
Step #400, epoch #33, avg. train loss: 0.36005
Step #500, epoch #41, avg. train loss: 0.30394
Step #600, epoch #50, avg. train loss: 0.24771
Step #700, epoch #58, avg. train loss: 0.21006
Step #800, epoch #66, avg. train loss: 0.17243
Step #900, epoch #75, avg. train loss: 0.15369
Step #1000, epoch #83, avg. train loss: 0.12665
Step #100, epoch #8, avg. train loss: 0.88987
Step #200, epoch #16, avg. train loss: 0.58779
Step #300, epoch #25, avg. train loss: 0.45963
Step #400, epoch #33, avg. train loss: 0.37728
Step #500, epoch #41, avg. train loss: 0.31244
Step #600, epoch #50, avg. train loss: 0.26547
Step #700, epoch #58, avg. train loss: 0.23508
Step #800, epoch #66, avg. train loss: 0.19069
Step #900, epoch #75, avg. train loss: 0.16507
Step #1000, epoch #83, avg. train loss: 0.13658
[ 0.65358438  0.76238333  0.74622796  0.64693205  0.60144287]
0.682114118242

In [197]:
# One hidden layer neural network

NN = skflow.TensorFlowDNNClassifier(hidden_units=[100], n_classes=3,batch_size=128, steps=1000, optimizer = 'Adam',learning_rate=0.001,verbose=0)

scores_NN1 = cross_validation.cross_val_score(NN, both_c, tt_c.squeeze()-1, cv=5,scoring='f1_weighted')

print(scores_NN1)
print(np.mean(scores_NN1))


[ 0.66369289  0.75233545  0.74937916  0.66041971  0.58509503]
0.682184449569

In [199]:
# Deep net with dropout
def my_model(X, y):
    """This is DNN with 10, 20, 10 hidden layers, and dropout of 0.5 probability."""
    layers = skflow.ops.dnn(X, [10, 20, 10], dropout=0.5)
    return skflow.models.logistic_regression(layers, y)

NN_drop = skflow.TensorFlowEstimator(model_fn=my_model, n_classes=3,batch_size=128, steps=2000, optimizer = 'Adam',learning_rate=0.01,verbose=1)
scores_NN_drop = cross_validation.cross_val_score(NN_drop, both_c, tt_c.squeeze()-1, cv=5,scoring='accuracy') #'f1_weighted')

print(scores_NN_drop)
print(np.mean(scores_NN_drop))


Step #100, epoch #8, avg. train loss: 1.14869
Step #200, epoch #16, avg. train loss: 1.04110
Step #300, epoch #25, avg. train loss: 1.01401
Step #400, epoch #33, avg. train loss: 1.00868
Step #500, epoch #41, avg. train loss: 0.99367
Step #600, epoch #50, avg. train loss: 0.99882
Step #700, epoch #58, avg. train loss: 0.97174
Step #800, epoch #66, avg. train loss: 0.94220
Step #900, epoch #75, avg. train loss: 0.94878
Step #1000, epoch #83, avg. train loss: 0.95615
Step #1100, epoch #91, avg. train loss: 0.96497
Step #1200, epoch #100, avg. train loss: 0.94810
Step #1300, epoch #108, avg. train loss: 0.96115
Step #1400, epoch #116, avg. train loss: 0.94362
Step #1500, epoch #125, avg. train loss: 0.93616
Step #1600, epoch #133, avg. train loss: 0.92822
Step #1700, epoch #141, avg. train loss: 0.94027
Step #1800, epoch #150, avg. train loss: 0.92864
Step #1900, epoch #158, avg. train loss: 0.92282
Step #2000, epoch #166, avg. train loss: 0.94435
Step #100, epoch #8, avg. train loss: 1.15985
Step #200, epoch #16, avg. train loss: 1.03994
Step #300, epoch #25, avg. train loss: 0.99027
Step #400, epoch #33, avg. train loss: 1.00230
Step #500, epoch #41, avg. train loss: 0.96287
Step #600, epoch #50, avg. train loss: 0.93045
Step #700, epoch #58, avg. train loss: 0.93116
Step #800, epoch #66, avg. train loss: 0.93291
Step #900, epoch #75, avg. train loss: 0.92715
Step #1000, epoch #83, avg. train loss: 0.94475
Step #1100, epoch #91, avg. train loss: 0.94337
Step #1200, epoch #100, avg. train loss: 0.88984
Step #1300, epoch #108, avg. train loss: 0.90813
Step #1400, epoch #116, avg. train loss: 0.91796
Step #1500, epoch #125, avg. train loss: 0.90387
Step #1600, epoch #133, avg. train loss: 0.91400
Step #1700, epoch #141, avg. train loss: 0.90965
Step #1800, epoch #150, avg. train loss: 0.89358
Step #1900, epoch #158, avg. train loss: 0.91560
Step #2000, epoch #166, avg. train loss: 0.93284
Step #100, epoch #8, avg. train loss: 1.16572
Step #200, epoch #16, avg. train loss: 1.01939
Step #300, epoch #25, avg. train loss: 0.95911
Step #400, epoch #33, avg. train loss: 0.96130
Step #500, epoch #41, avg. train loss: 0.93773
Step #600, epoch #50, avg. train loss: 0.92886
Step #700, epoch #58, avg. train loss: 0.92879
Step #800, epoch #66, avg. train loss: 0.90902
Step #900, epoch #75, avg. train loss: 0.92708
Step #1000, epoch #83, avg. train loss: 0.94649
Step #1100, epoch #91, avg. train loss: 0.98825
Step #1200, epoch #100, avg. train loss: 0.92764
Step #1300, epoch #108, avg. train loss: 0.92938
Step #1400, epoch #116, avg. train loss: 0.95013
Step #1500, epoch #125, avg. train loss: 0.92809
Step #1600, epoch #133, avg. train loss: 0.92355
Step #1700, epoch #141, avg. train loss: 0.91293
Step #1800, epoch #150, avg. train loss: 0.89765
Step #1900, epoch #158, avg. train loss: 0.88897
Step #2000, epoch #166, avg. train loss: 0.91069
Step #100, epoch #8, avg. train loss: 1.14496
Step #200, epoch #16, avg. train loss: 1.01918
Step #300, epoch #25, avg. train loss: 0.97850
Step #400, epoch #33, avg. train loss: 0.94890
Step #500, epoch #41, avg. train loss: 0.96045
Step #600, epoch #50, avg. train loss: 0.92744
Step #700, epoch #58, avg. train loss: 0.92457
Step #800, epoch #66, avg. train loss: 0.91286
Step #900, epoch #75, avg. train loss: 0.91005
Step #1000, epoch #83, avg. train loss: 0.92114
Step #1100, epoch #91, avg. train loss: 0.90968
Step #1200, epoch #100, avg. train loss: 0.88736
Step #1300, epoch #108, avg. train loss: 0.89987
Step #1400, epoch #116, avg. train loss: 0.89299
Step #1500, epoch #125, avg. train loss: 0.87710
Step #1600, epoch #133, avg. train loss: 0.87049
Step #1700, epoch #141, avg. train loss: 0.87700
Step #1800, epoch #150, avg. train loss: 0.89919
Step #1900, epoch #158, avg. train loss: 0.86781
Step #2000, epoch #166, avg. train loss: 0.88358
Step #100, epoch #8, avg. train loss: 1.14680
Step #200, epoch #16, avg. train loss: 1.04248
Step #300, epoch #25, avg. train loss: 0.99218
Step #400, epoch #33, avg. train loss: 0.93282
Step #500, epoch #41, avg. train loss: 0.93449
Step #600, epoch #50, avg. train loss: 0.90859
Step #700, epoch #58, avg. train loss: 0.90043
Step #800, epoch #66, avg. train loss: 0.89334
Step #900, epoch #75, avg. train loss: 0.90603
Step #1000, epoch #83, avg. train loss: 0.92463
Step #1100, epoch #91, avg. train loss: 0.96414
Step #1200, epoch #100, avg. train loss: 0.94658
Step #1300, epoch #108, avg. train loss: 0.89849
Step #1400, epoch #116, avg. train loss: 0.88866
Step #1500, epoch #125, avg. train loss: 0.86922
Step #1600, epoch #133, avg. train loss: 0.86260
Step #1700, epoch #141, avg. train loss: 0.86635
Step #1800, epoch #150, avg. train loss: 0.87086
Step #1900, epoch #158, avg. train loss: 0.86440
Step #2000, epoch #166, avg. train loss: 0.88345
[ 0.57223796  0.60056657  0.50991501  0.50991501  0.59375   ]
0.557276912181

In [259]:
# SVM
from sklearn import svm
lin_svm = svm.LinearSVC()
scores_svm = cross_validation.cross_val_score(lin_svm,  both_c, tt_c.squeeze(),cv=5,scoring='accuracy')
print(scores_svm)
print(np.mean(scores_svm))


[ 0.53107345  0.5480226   0.5184136   0.51988636  0.49287749]
0.522054699889

In [248]:
# Naive bayes
cross_validation.cross_val_predict?

In [140]:
# Test all 3 models with all of the data (will overfit but we'll try and fix this later...)
lr.fit(both_c,tt_c.squeeze())
NN.fit(both_c,tt_c.squeeze()-1)
# NN_drop.fit(both_c,tt_c.squeeze()-1)


Out[140]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

In [137]:
print('Log Reg: ',accuracy_score(tt_c.squeeze(),lr.predict(both_c)))
print('NN: ',accuracy_score(tt_c.squeeze()-1,NN.predict(both_c)))
print('Deep NN: ',accuracy_score(tt_c.squeeze()-1,NN_drop.predict(both_c)))


Log Reg:  0.456349206349
NN:  0.989795918367
Deep NN:  0.537414965986

In [297]:
# ROC for mouse
fig, ax = plt.subplots(figsize=(6,6))
trialtypes = ['Posterior Pole','Anterior Pole','No Go'] # 36

# Mouse score
mouse_choice = ch[clean.squeeze()].values

fpr = dict()
tpr = dict()
roc_auc = dict()
n_classes = 3
for i in range(0,3):
    these_trials = tt_c == i+1
    binary_trials = np.zeros_like(tt_c.squeeze())    
    binary_trials[these_trials.squeeze()] = 1
    
    wrong = mouse_choice != i+1
    binary_preds = np.ones_like(mouse_choice)
    binary_preds[wrong] = 0
    fpr[i], tpr[i], thresholds = metrics.roc_curve(binary_trials,binary_preds)
    roc_auc[i] = metrics.auc(fpr[i], tpr[i])
    plt.plot(fpr[i], tpr[i], lw=1, label='ROC ' + trialtypes[i] +' (area = %0.2f)' % (roc_auc[i]))
    

# Compute macro-average ROC following sklearn docs

# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
    mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"])
plt.plot(fpr["macro"], tpr["macro"],
         label='macro-average ROC curve (area = {0:0.2f})'''.format(roc_auc["macro"]),linewidth=2)

plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Chance')
plt.legend(loc=4)
plt.savefig('ROC_Mouse_trialtype_'+ mouse_name +'.png')



In [523]:
# plt.scatter(theta,kappa)
tt1 = tt == 1
sum(tt1)
t = theta.values
t2 = t[tt1.squeeze()]
t2.shape
# tt1.shape
# fig, ax = plt.subplots(figsize=(10,5))
# _ =plt.plot(t[tt1.squeeze()])


/Users/mathew/miniconda/envs/py35/lib/python3.5/site-packages/ipykernel/__main__.py:5: FutureWarning: in the future, boolean array-likes will be handled as a boolean array index
Out[523]:
(2177, 5000)

In [517]:
# plt.plot(tt_c[these_trials])
# plt.imshow(both_c[these_trials.squeeze()],aspect = 0.1)
# both_c.shape
# these_trials.shape
# plt.plot(NN.predict(both_c[these_trials.squeeze()]))
# plt.plot(tt_c[these_trials.squeeze()]-1)
# preds.shape
# wrong.shape
# binary_preds
# tt_c[these_trials.squeeze()]
# i?
# np.ones_like(binary_preds)
# NN.predict_proba(both_c[these_trials.squeeze()]).shape
# tt_c.shape
trialtypes = ['Left','Right','No Go']
trialtypes[1]


Out[517]:
'Right'

In [452]:
# Conv net
def max_pool_2x1(tensor_in):
    return tf.nn.max_pool(tensor_in, ksize=[1, 2, 1, 1], strides=[1, 2, 1, 1],
        padding='SAME')

def conv_model(X, y):
    # reshape X to 4d tensor with 2nd and 3rd dimensions being image width and height
    # final dimension being the number of color channels
    X = tf.reshape(X, [-1, 100, 1, 1])
    # first conv layer will compute 32 features for each 5x1 strip
    with tf.variable_scope('conv_layer1'):
        h_conv1 = skflow.ops.conv2d(X, n_filters=32, filter_shape=[5, 1], 
                                    bias=True, activation=tf.nn.relu)
        h_pool1 = max_pool_2x1(h_conv1)
    # second conv layer will compute 64 features for each 5x1 strip
    with tf.variable_scope('conv_layer2'):
        h_conv2 = skflow.ops.conv2d(h_pool1, n_filters=64, filter_shape=[5, 1], 
                                    bias=True, activation=tf.nn.relu)
        h_pool2 = max_pool_2x1(h_conv2)
        # reshape tensor into a batch of vectors
        h_pool2_flat = tf.reshape(h_pool2, [-1, 5 * 5 * 64])
    # densely connected layer with 1024 neurons
    h_fc1 = skflow.ops.dnn(h_pool2_flat, [1024], activation=tf.nn.relu, dropout=0.5)
    return skflow.models.logistic_regression(h_fc1, y)

# Training and predicting
classifier3 = skflow.TensorFlowEstimator(
    model_fn=conv_model, n_classes=10, batch_size=100, steps=20000,
    learning_rate=0.001)

In [122]:
classifier.fit(both_c,tt_c.squeeze()-1)


Step #100, epoch #5, avg. train loss: 1.35360
Step #200, epoch #11, avg. train loss: 1.20178
Step #300, epoch #16, avg. train loss: 1.16640
Step #400, epoch #22, avg. train loss: 1.13603
Step #500, epoch #27, avg. train loss: 1.12254
Step #600, epoch #33, avg. train loss: 1.11399
Step #700, epoch #38, avg. train loss: 1.10485
Step #800, epoch #44, avg. train loss: 1.09972
Step #900, epoch #50, avg. train loss: 1.09586
Step #1000, epoch #55, avg. train loss: 1.09505
Step #1100, epoch #61, avg. train loss: 1.09069
Step #1200, epoch #66, avg. train loss: 1.08123
Step #1300, epoch #72, avg. train loss: 1.07818
Step #1400, epoch #77, avg. train loss: 1.07795
Step #1500, epoch #83, avg. train loss: 1.07521
Step #1600, epoch #88, avg. train loss: 1.06800
Step #1700, epoch #94, avg. train loss: 1.06861
Step #1800, epoch #100, avg. train loss: 1.06602
Step #1900, epoch #105, avg. train loss: 1.05996
Step #2000, epoch #111, avg. train loss: 1.05853
Step #2100, epoch #116, avg. train loss: 1.05690
Step #2200, epoch #122, avg. train loss: 1.05516
Step #2300, epoch #127, avg. train loss: 1.04927
Step #2400, epoch #133, avg. train loss: 1.04840
Step #2500, epoch #138, avg. train loss: 1.04748
Step #2600, epoch #144, avg. train loss: 1.04489
Step #2700, epoch #150, avg. train loss: 1.04213
Step #2800, epoch #155, avg. train loss: 1.04057
Step #2900, epoch #161, avg. train loss: 1.03852
Step #3000, epoch #166, avg. train loss: 1.03876
Step #3100, epoch #172, avg. train loss: 1.03233
Step #3200, epoch #177, avg. train loss: 1.03345
Step #3300, epoch #183, avg. train loss: 1.02899
Step #3400, epoch #188, avg. train loss: 1.02781
Step #3500, epoch #194, avg. train loss: 1.02408
Step #3600, epoch #200, avg. train loss: 1.02472
Step #3700, epoch #205, avg. train loss: 1.01973
Step #3800, epoch #211, avg. train loss: 1.01985
Step #3900, epoch #216, avg. train loss: 1.02125
Step #4000, epoch #222, avg. train loss: 1.01848
Step #4100, epoch #227, avg. train loss: 1.01682
Step #4200, epoch #233, avg. train loss: 1.01100
Step #4300, epoch #238, avg. train loss: 1.00799
Step #4400, epoch #244, avg. train loss: 1.00743
Step #4500, epoch #250, avg. train loss: 1.00214
Step #4600, epoch #255, avg. train loss: 1.00455
Step #4700, epoch #261, avg. train loss: 1.00507
Step #4800, epoch #266, avg. train loss: 1.00197
Step #4900, epoch #272, avg. train loss: 0.99705
Step #5000, epoch #277, avg. train loss: 0.99659
Step #5100, epoch #283, avg. train loss: 0.99129
Step #5200, epoch #288, avg. train loss: 0.99076
Step #5300, epoch #294, avg. train loss: 0.99584
Step #5400, epoch #300, avg. train loss: 0.98942
Step #5500, epoch #305, avg. train loss: 0.98545
Step #5600, epoch #311, avg. train loss: 0.98348
Step #5700, epoch #316, avg. train loss: 0.98443
Step #5800, epoch #322, avg. train loss: 0.97916
Step #5900, epoch #327, avg. train loss: 0.97974
Step #6000, epoch #333, avg. train loss: 0.97791
Step #6100, epoch #338, avg. train loss: 0.97882
Step #6200, epoch #344, avg. train loss: 0.97301
Step #6300, epoch #350, avg. train loss: 0.97029
Step #6400, epoch #355, avg. train loss: 0.97093
Step #6500, epoch #361, avg. train loss: 0.96477
Step #6600, epoch #366, avg. train loss: 0.96557
Step #6700, epoch #372, avg. train loss: 0.96516
Step #6800, epoch #377, avg. train loss: 0.96477
Step #6900, epoch #383, avg. train loss: 0.95679
Step #7000, epoch #388, avg. train loss: 0.96028
Step #7100, epoch #394, avg. train loss: 0.95860
Step #7200, epoch #400, avg. train loss: 0.95298
Step #7300, epoch #405, avg. train loss: 0.95307
Step #7400, epoch #411, avg. train loss: 0.94568
Step #7500, epoch #416, avg. train loss: 0.94520
Step #7600, epoch #422, avg. train loss: 0.94963
Step #7700, epoch #427, avg. train loss: 0.94878
Step #7800, epoch #433, avg. train loss: 0.94069
Step #7900, epoch #438, avg. train loss: 0.94069
Step #8000, epoch #444, avg. train loss: 0.93292
Step #8100, epoch #450, avg. train loss: 0.93767
Step #8200, epoch #455, avg. train loss: 0.93352
Step #8300, epoch #461, avg. train loss: 0.93247
Step #8400, epoch #466, avg. train loss: 0.92782
Step #8500, epoch #472, avg. train loss: 0.92752
Step #8600, epoch #477, avg. train loss: 0.92698
Step #8700, epoch #483, avg. train loss: 0.92483
Step #8800, epoch #488, avg. train loss: 0.91828
Step #8900, epoch #494, avg. train loss: 0.92395
Step #9000, epoch #500, avg. train loss: 0.91878
Step #9100, epoch #505, avg. train loss: 0.91621
Step #9200, epoch #511, avg. train loss: 0.91375
Step #9300, epoch #516, avg. train loss: 0.91170
Step #9400, epoch #522, avg. train loss: 0.91242
Step #9500, epoch #527, avg. train loss: 0.90868
Step #9600, epoch #533, avg. train loss: 0.90472
Step #9700, epoch #538, avg. train loss: 0.90323
Step #9800, epoch #544, avg. train loss: 0.90428
Step #9900, epoch #550, avg. train loss: 0.89727
Step #10000, epoch #555, avg. train loss: 0.90293
Step #10100, epoch #561, avg. train loss: 0.89714
Step #10200, epoch #566, avg. train loss: 0.89506
Step #10300, epoch #572, avg. train loss: 0.89400
Step #10400, epoch #577, avg. train loss: 0.88804
Step #10500, epoch #583, avg. train loss: 0.88623
Step #10600, epoch #588, avg. train loss: 0.89189
Step #10700, epoch #594, avg. train loss: 0.88276
Step #10800, epoch #600, avg. train loss: 0.87996
Step #10900, epoch #605, avg. train loss: 0.88099
Step #11000, epoch #611, avg. train loss: 0.87693
Step #11100, epoch #616, avg. train loss: 0.87348
Step #11200, epoch #622, avg. train loss: 0.87230
Step #11300, epoch #627, avg. train loss: 0.86946
Step #11400, epoch #633, avg. train loss: 0.86653
Step #11500, epoch #638, avg. train loss: 0.87163
Step #11600, epoch #644, avg. train loss: 0.86561
Step #11700, epoch #650, avg. train loss: 0.86412
Step #11800, epoch #655, avg. train loss: 0.86226
Step #11900, epoch #661, avg. train loss: 0.85540
Step #12000, epoch #666, avg. train loss: 0.85878
Step #12100, epoch #672, avg. train loss: 0.85850
Step #12200, epoch #677, avg. train loss: 0.85017
Step #12300, epoch #683, avg. train loss: 0.84906
Step #12400, epoch #688, avg. train loss: 0.84274
Step #12500, epoch #694, avg. train loss: 0.84569
Step #12600, epoch #700, avg. train loss: 0.84176
Step #12700, epoch #705, avg. train loss: 0.84002
Step #12800, epoch #711, avg. train loss: 0.83904
Step #12900, epoch #716, avg. train loss: 0.83598
Step #13000, epoch #722, avg. train loss: 0.83640
Step #13100, epoch #727, avg. train loss: 0.83090
Step #13200, epoch #733, avg. train loss: 0.82868
Step #13300, epoch #738, avg. train loss: 0.82810
Step #13400, epoch #744, avg. train loss: 0.82541
Step #13500, epoch #750, avg. train loss: 0.82396
Step #13600, epoch #755, avg. train loss: 0.82530
Step #13700, epoch #761, avg. train loss: 0.81704
Step #13800, epoch #766, avg. train loss: 0.82026
Step #13900, epoch #772, avg. train loss: 0.81388
Step #14000, epoch #777, avg. train loss: 0.81057
Step #14100, epoch #783, avg. train loss: 0.81451
Step #14200, epoch #788, avg. train loss: 0.80340
Step #14300, epoch #794, avg. train loss: 0.80912
Step #14400, epoch #800, avg. train loss: 0.80419
Step #14500, epoch #805, avg. train loss: 0.80633
Step #14600, epoch #811, avg. train loss: 0.79871
Step #14700, epoch #816, avg. train loss: 0.80212
Step #14800, epoch #822, avg. train loss: 0.79353
Step #14900, epoch #827, avg. train loss: 0.79071
Step #15000, epoch #833, avg. train loss: 0.79410
Step #15100, epoch #838, avg. train loss: 0.79034
Step #15200, epoch #844, avg. train loss: 0.78865
Step #15300, epoch #850, avg. train loss: 0.78606
Step #15400, epoch #855, avg. train loss: 0.77854
Step #15500, epoch #861, avg. train loss: 0.77884
Step #15600, epoch #866, avg. train loss: 0.77971
Step #15700, epoch #872, avg. train loss: 0.77835
Step #15800, epoch #877, avg. train loss: 0.77282
Step #15900, epoch #883, avg. train loss: 0.77495
Step #16000, epoch #888, avg. train loss: 0.76658
Step #16100, epoch #894, avg. train loss: 0.76841
Step #16200, epoch #900, avg. train loss: 0.76369
Step #16300, epoch #905, avg. train loss: 0.76553
Step #16400, epoch #911, avg. train loss: 0.75882
Step #16500, epoch #916, avg. train loss: 0.75899
Step #16600, epoch #922, avg. train loss: 0.75821
Step #16700, epoch #927, avg. train loss: 0.75386
Step #16800, epoch #933, avg. train loss: 0.75398
Step #16900, epoch #938, avg. train loss: 0.74601
Step #17000, epoch #944, avg. train loss: 0.75184
Step #17100, epoch #950, avg. train loss: 0.74895
Step #17200, epoch #955, avg. train loss: 0.74207
Step #17300, epoch #961, avg. train loss: 0.74038
Step #17400, epoch #966, avg. train loss: 0.73144
Step #17500, epoch #972, avg. train loss: 0.73606
Step #17600, epoch #977, avg. train loss: 0.73566
Step #17700, epoch #983, avg. train loss: 0.73422
Step #17800, epoch #988, avg. train loss: 0.72740
Step #17900, epoch #994, avg. train loss: 0.72633
Step #18000, epoch #1000, avg. train loss: 0.72663
Step #18100, epoch #1005, avg. train loss: 0.72530
Step #18200, epoch #1011, avg. train loss: 0.72532
Step #18300, epoch #1016, avg. train loss: 0.72057
Step #18400, epoch #1022, avg. train loss: 0.71928
Step #18500, epoch #1027, avg. train loss: 0.71353
Step #18600, epoch #1033, avg. train loss: 0.71132
Step #18700, epoch #1038, avg. train loss: 0.71090
Step #18800, epoch #1044, avg. train loss: 0.70996
Step #18900, epoch #1050, avg. train loss: 0.70915
Step #19000, epoch #1055, avg. train loss: 0.70120
Step #19100, epoch #1061, avg. train loss: 0.70089
Step #19200, epoch #1066, avg. train loss: 0.70038
Step #19300, epoch #1072, avg. train loss: 0.69912
Step #19400, epoch #1077, avg. train loss: 0.69077
Step #19500, epoch #1083, avg. train loss: 0.69294
Step #19600, epoch #1088, avg. train loss: 0.69158
Step #19700, epoch #1094, avg. train loss: 0.69082
Step #19800, epoch #1100, avg. train loss: 0.68710
Step #19900, epoch #1105, avg. train loss: 0.68437
Step #20000, epoch #1111, avg. train loss: 0.68327
Out[122]:
TensorFlowEstimator(batch_size=100, class_weight=None, clip_gradients=5.0,
          config=None, continue_training=False, learning_rate=0.001,
          model_fn=<function conv_model at 0x11bb8af28>, n_classes=10,
          optimizer='Adagrad', steps=20000, verbose=1)

In [124]:
accuracy_score(tt_c.squeeze()-1,classifier.predict(both_c))


Out[124]:
0.82256235827664403

In [130]:
# Convnet
convnet = skflow.TensorFlowEstimator(
    model_fn=conv_model, n_classes=10, batch_size=100, steps=20000,
    learning_rate=0.001,verbose=0)

# convnet.fit(traindata,trainlabs1D-1)
# lr.fit(both_c,tt_c.squeeze())
# print(accuracy_score(testlabs1D-1,convnet.predict(testdata)))

scores_convnet = cross_validation.cross_val_score(convnet, both_c, tt_c.squeeze()-1, cv=5,scoring='accuracy') #'f1_weighted')

print(scores_convnet)
print(np.mean(scores_convnet))


[ 0.32294618  0.32577904  0.36543909  0.32294618  0.34090909]
0.335603914499

In [193]:
plt.plot(np.mean(both_c[tt_c.squeeze() ==1],0))
plt.plot(np.mean(both_c[tt_c.squeeze() ==2],0))
plt.plot(np.mean(both_c[tt_c.squeeze() ==3],0))


Out[193]:
[<matplotlib.lines.Line2D at 0x118eb6c50>]

In [194]:
plt.plot(np.mean(traindata[trainlabs1D.squeeze() ==1],0))
plt.plot(np.mean(traindata[trainlabs1D.squeeze() ==2],0))
plt.plot(np.mean(traindata[trainlabs1D.squeeze() ==3],0))


Out[194]:
[<matplotlib.lines.Line2D at 0x12afcac50>]

In [207]:
plt.hist(preds)
wrong


Out[207]:
array([ True,  True,  True, ...,  True, False,  True], dtype=bool)

In [ ]: