In [ ]:
%matplotlib inline
%config InlineBackend.figure_format = "retina"

from matplotlib import rcParams

rcParams["savefig.dpi"] = 200
rcParams["font.size"] = 8

import warnings

warnings.filterwarnings("ignore")

Create 2D integer masks

In this tutorial we will show how to create 2D integer mask for arbitrary latitude and longitude grids.

.. note:: 2D masks are good for plotting. However, to calculate weighted regional averages 3D boolean masks are more convenient. See the :doc:`tutorial on 3D masks`.

Import regionmask and check the version:


In [ ]:
import regionmask

regionmask.__version__

Load xarray and the tutorial data:


In [ ]:
import xarray as xr
import numpy as np

Creating a mask

Define a lon/ lat grid with a 1° grid spacing, where the points define the center of the grid.


In [ ]:
lon = np.arange(-179.5, 180)
lat = np.arange(-89.5, 90)

We will create a mask with the SREX regions (Seneviratne et al., 2012).


In [ ]:
regionmask.defined_regions.srex

The function mask determines which gripoints lie within the polygon making up the each region:


In [ ]:
mask = regionmask.defined_regions.srex.mask(lon, lat)
mask

mask is now a xarray.Dataset with shape lat x lon (if you need a numpy array use mask.values). Gridpoints that do not fall in a region are NaN, the gridpoints that fall in a region are encoded with the number of the region (here 1 to 26).

We can now plot the mask:


In [ ]:
import cartopy.crs as ccrs
import matplotlib.pyplot as plt

f, ax = plt.subplots(subplot_kw=dict(projection=ccrs.PlateCarree()))
ax.coastlines()

mask.plot(ax=ax, transform=ccrs.PlateCarree(), add_colorbar=False);

Working with a mask

masks can be used to select data in a certain region and to calculate regional averages - let's illustrate this with a 'real' dataset:


In [ ]:
airtemps = xr.tutorial.load_dataset("air_temperature")

The example data is a temperature field over North America. Let's plot the first time step:


In [ ]:
# choose a good projection for regional maps
proj = ccrs.LambertConformal(central_longitude=-100)

ax = plt.subplot(111, projection=proj)

airtemps.isel(time=1).air.plot.pcolormesh(ax=ax, transform=ccrs.PlateCarree())

ax.coastlines();

Conviniently we can directly pass an xarray object to the mask function. It gets the longitude and latitude from the DataArray/ Dataset and creates the mask. If the longitude and latitude in the xarray object are not called "lon" and "lat", respectively; you can pass their name via the lon_name and lat_name keyword.


In [ ]:
mask = regionmask.defined_regions.srex.mask(airtemps)
.. note:: From version 0.5 ``regionmask`` automatically detects wether the longitude needs to be wrapped around, i.e. if the regions extend from -180° E to 180° W, while the grid goes from 0° to 360° W as in our example:

In [ ]:
lon = airtemps.lon.values
print("Grid extent:    {:3.0f}°E to {:3.0f}°E".format(lon.min(), lon.max()))

bounds = regionmask.defined_regions.srex.bounds_global
print("Region extent: {:3.0f}°E to {:3.0f}°E".format(bounds[0], bounds[2]))

Let's plot the mask of the regions:


In [ ]:
proj = ccrs.LambertConformal(central_longitude=-100)
ax = plt.subplot(111, projection=proj)

low = mask.min()
high = mask.max()

levels = np.arange(low - 0.5, high + 1)

h = mask.plot.pcolormesh(
    ax=ax, transform=ccrs.PlateCarree(), levels=levels, add_colorbar=False
)

# for colorbar: find abbreviations of all regions that were selected
reg = np.unique(mask.values)
reg = reg[~np.isnan(reg)]
abbrevs = regionmask.defined_regions.srex[reg].abbrevs

cbar = plt.colorbar(h, orientation="horizontal", fraction=0.075, pad=0.05)

cbar.set_ticks(reg)
cbar.set_ticklabels(abbrevs)
cbar.set_label("Region")

ax.coastlines()

# fine tune the extent
ax.set_extent([200, 330, 10, 75], crs=ccrs.PlateCarree())

We want to select the region 'Central North America'. Thus we first need to find out which number this is:


In [ ]:
CNA_index = regionmask.defined_regions.srex.map_keys("C. North America")
CNA_index

Mask out a region

xarray provides the handy where function:


In [ ]:
airtemps_CNA = airtemps.where(mask == CNA_index)

Check everything went well by repeating the first plot with the selected region:


In [ ]:
# choose a good projection for regional maps
proj = ccrs.LambertConformal(central_longitude=-100)

ax = plt.subplot(111, projection=proj)

regionmask.defined_regions.srex[["CNA"]].plot(ax=ax, add_label=False)

airtemps_CNA.isel(time=1).air.plot.pcolormesh(ax=ax, transform=ccrs.PlateCarree())

ax.coastlines();

Looks good - with this we can calculate the region average.

Calculate weighted regional average

From version 0.15.1 xarray includes a function to calculate the weighted mean - we use cos(lat) as proxy of the grid cell area

.. note:: It is better to use a model's original grid cell area (e.g. areacella). ``cos(lat)`` works reasonably well for regular lat/ lon grids. For irregular grids (regional models, ocean models, ...) it is not appropriate.

In [ ]:
weights = np.cos(np.deg2rad(airtemps.lat))

ts_airtemps_CNA = airtemps_CNA.weighted(weights).mean(dim=("lat", "lon")) - 273.15

We plot the resulting time series:


In [ ]:
f, ax = plt.subplots()
ts_airtemps_CNA.air.plot.line(ax=ax, label="Central North America")

ax.axhline(0, color="0.1", lw=0.5)

plt.legend();

To get the regional average for each region you would need to loop over them. However, it's easier to use a 3D mask.

Calculate regional averages using groupby

.. warning:: Using ``groupby`` offers some convenience and is faster than using ``where`` and a loop. However, it cannot currently be combinded with ``weighted`` (xarray `GH3937 `_). Therefore, I recommend working with a :doc:`3D mask`.

In [ ]:
# you can group over all integer values of the mask
airtemps_all = airtemps.groupby(mask).mean()
airtemps_all

Multidimensional coordinates

Regionmask can also handle mutltidimensional longitude/ latitude grids (e.g. from a regional climate model). As xarray provides such an example dataset, we will use it to illustrate it. See also in the xarray documentation.

Load the tutorial data:


In [ ]:
rasm = xr.tutorial.load_dataset("rasm")

The example data is a temperature field over the Northern Hemisphere. Let's plot the first time step:


In [ ]:
# choose a projection
proj = ccrs.NorthPolarStereo()

ax = plt.subplot(111, projection=proj)
ax.set_global()

rasm.isel(time=1).Tair.plot.pcolormesh(
    ax=ax, x="xc", y="yc", transform=ccrs.PlateCarree()
)

# add the abbreviation of the regions
regionmask.defined_regions.srex.plot(
    ax=ax, regions=[1, 2, 11, 12, 18], coastlines=False, label="abbrev"
)

ax.set_extent([-180, 180, 43, 90], ccrs.PlateCarree())

ax.coastlines();

Again we pass the xarray object to regionmask. We have to specify "xc" and "yc" as the longitude and latitude coordinates of the array:


In [ ]:
mask = regionmask.defined_regions.srex.mask(rasm, lon_name="xc", lat_name="yc")
mask

We want to select the region 'NAS' (Northern Asia).

Select using where

We have to select by index (the number of the region), we thus map from the abbreviation to the index.


In [ ]:
rasm_NAS = rasm.where(mask == regionmask.defined_regions.srex.map_keys("NAS"))

Check everything went well by repeating the first plot with the selected region:


In [ ]:
# choose a projection
proj = ccrs.NorthPolarStereo()

ax = plt.subplot(111, projection=proj)
ax.set_global()

rasm_NAS.isel(time=1).Tair.plot.pcolormesh(
    ax=ax, x="xc", y="yc", transform=ccrs.PlateCarree()
)


# add the abbreviation of the regions
regionmask.defined_regions.srex.plot(
    ax=ax, regions=["NAS"], coastlines=False, label="abbrev"
)

ax.set_extent([-180, 180, 45, 90], ccrs.PlateCarree())

ax.coastlines();

References


In [ ]: