This example shows you how to perform Bayesian inference on a Gaussian distribution and a time-series problem, using Hamiltonian Monte Carlo.
First, we create a simple normal distribution
In [1]:
import pints
import pints.toy
import numpy as np
import matplotlib.pyplot as plt
# Create log pdf
log_pdf = pints.toy.GaussianLogPDF([2, 4], [[1, 0], [0, 3]])
# Contour plot of pdf
levels = np.linspace(-3,12,20)
num_points = 100
x = np.linspace(-1, 5, num_points)
y = np.linspace(-0, 8, num_points)
X, Y = np.meshgrid(x, y)
Z = np.zeros(X.shape)
Z = np.exp([[log_pdf([i, j]) for i in x] for j in y])
plt.contour(X, Y, Z)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
Now we set up and run a sampling routine using Hamiltonian MCMC
In [2]:
# Choose starting points for 3 mcmc chains
xs = [
[2, 1],
[3, 3],
[5, 4],
]
# Set a standard deviation, to give the method a sense of scale
#sigma = [1, 1]
# Create mcmc routine
mcmc = pints.MCMCController(log_pdf, 3, xs, method=pints.HamiltonianMCMC)
# Add stopping criterion
mcmc.set_max_iterations(1000)
# Set up modest logging
mcmc.set_log_to_screen(True)
mcmc.set_log_interval(100)
# # Update step sizes used by individual samplers
for sampler in mcmc.samplers():
sampler.set_leapfrog_step_size(0.5)
# Run!
print('Running...')
full_chains = mcmc.run()
print('Done!')
In [3]:
# Show traces and histograms
import pints.plot
pints.plot.trace(full_chains)
plt.show()
In [4]:
# Discard warm up
chains = full_chains[:, 200:]
# Check convergence using rhat criterion
print('R-hat:')
print(pints.rhat_all_params(chains))
# Check Kullback-Leibler divergence of chains
print(log_pdf.kl_divergence(chains[0]))
print(log_pdf.kl_divergence(chains[1]))
print(log_pdf.kl_divergence(chains[2]))
# Look at distribution in chain 0
pints.plot.pairwise(chains[0], kde=True)
plt.show()
In [5]:
import pints.toy as toy
# Create a wrapper around the logistic model, turning it into a 1d model
class Model(pints.ForwardModel):
def __init__(self):
self.model = toy.LogisticModel()
def simulate(self, x, times):
return self.model.simulate([x[0], 500], times)
def simulateS1(self, x, times):
values, gradient = self.model.simulateS1([x[0], 500], times)
gradient = gradient[:, 0]
return values, gradient
def n_parameters(self):
return 1
# Load a forward model
model = Model()
# Create some toy data
real_parameters = np.array([0.015])
times = np.linspace(0, 1000, 50)
org_values = model.simulate(real_parameters, times)
# Add noise
np.random.seed(1)
noise = 10
values = org_values + np.random.normal(0, noise, org_values.shape)
plt.figure()
plt.plot(times, values)
plt.plot(times, org_values)
plt.show()
We can use optimisation to find the parameter value that maximises the loglikelihood, and note that it's become slightly biased due to noise.
In [6]:
# Create an object with links to the model and time series
problem = pints.SingleOutputProblem(model, times, values)
# Create a log-likelihood function
log_likelihood = pints.GaussianKnownSigmaLogLikelihood(problem, noise)
# Find the best parameters with XNES
best_parameters, fx = pints.optimise(log_likelihood, real_parameters, method=pints.XNES)
print(best_parameters[0])
In [7]:
# Show the likelihood near the true parameters
plt.figure()
x = np.linspace(0.01497, 0.01505, 500)
y = [log_likelihood([i]) for i in x]
plt.axvline(real_parameters[0], color='tab:orange', label='real')
plt.axvline(best_parameters[0], color='tab:green', label='found')
plt.legend()
plt.plot(x, y)
plt.show()
Because the LogisticModel (and our wrapper) support the evaluatS1()
method, we can also evaluate the gradient of the loglikelihood at different points:
In [8]:
# Show derivatives at two points
y1, dy1 = log_likelihood.evaluateS1(real_parameters)
y2, dy2 = log_likelihood.evaluateS1(best_parameters)
# Show the likelihood near the true parameters
x = np.linspace(0.01498, 0.01502, 500)
y = [log_likelihood([i]) for i in x]
z1 = y1 + (x - real_parameters[0]) * dy1
z2 = y2 + (x - best_parameters[0]) * dy2
plt.figure()
plt.plot(x, y)
plt.plot(x, z1, label='real parameters')
plt.plot(x, z2, label='found parameters')
plt.legend()
plt.show()
Satisfied that this works, we now run a HamiltonianMCMC routine (which uses the derivative information)
In [9]:
# Choose starting points for mcmc chains
xs = [
real_parameters * 1.01,
real_parameters * 0.9,
real_parameters * 1.15,
]
# Choose a covariance matrix for the proposal step
#sigma0 = (best_parameters - real_parameters) * 0.1
sigma0 = np.abs(real_parameters)
# Create a uniform prior over both the parameters and the new noise variable
log_prior = pints.UniformLogPrior(
[0.01],
[0.02]
)
# Make posterior
log_posterior = pints.LogPosterior(log_likelihood, log_prior)
# Create mcmc routine
mcmc = pints.MCMCController(log_posterior, len(xs), xs, method=pints.HamiltonianMCMC)
# Add stopping criterion
mcmc.set_max_iterations(1000)
# Set up modest logging
mcmc.set_log_to_screen(True)
mcmc.set_log_interval(100)
# Set small step size
# for sampler in mcmc.samplers():
# sampler.set_leapfrog_step_size(3e-5) # This is very sensitive!
# Run!
print('Running...')
chains = mcmc.run()
print('Done!')
In [10]:
# Show trace and histogram
pints.plot.trace(chains)
plt.show()
In [11]:
# Show predicted time series for the first chain
pints.plot.series(chains[0, 200:], problem, real_parameters)
plt.show()
In [12]:
import pints
import pints.toy as toy
import pints.plot
import numpy as np
import matplotlib.pyplot as plt
# Load a forward model
model = toy.LogisticModel()
# Create some toy data
real_parameters = np.array([0.015, 500])
org_values = model.simulate(real_parameters, times)
# Add noise
np.random.seed(1)
noise = 10
values = org_values + np.random.normal(0, noise, org_values.shape)
# Create an object with links to the model and time series
problem = pints.SingleOutputProblem(model, times, values)
# Create a log-likelihood function
log_likelihood = pints.GaussianKnownSigmaLogLikelihood(problem, noise)
# Create a uniform prior over the parameters
log_prior = pints.UniformLogPrior(
[0.01, 400],
[0.02, 600]
)
# Create a posterior log-likelihood (log(likelihood * prior))
log_posterior = pints.LogPosterior(log_likelihood, log_prior)
# Choose starting points for 3 mcmc chains
xs = [
real_parameters * 1.01,
real_parameters * 0.9,
real_parameters * 1.1,
]
# Create mcmc routine
mcmc = pints.MCMCController(log_posterior, len(xs), xs, method=pints.HamiltonianMCMC)
# Add stopping criterion
mcmc.set_max_iterations(1000)
# Set up modest logging
mcmc.set_log_to_screen(True)
mcmc.set_log_interval(100)
# Run!
print('Running...')
chains = mcmc.run()
print('Done!')
In [13]:
# Show traces and histograms
pints.plot.trace(chains)
plt.show()
Chains have converged!
In [14]:
# Discard warm up
chains = chains[:, 200:]
# Check convergence using rhat criterion
print('R-hat:')
print(pints.rhat_all_params(chains))
Extract any divergent iterations
In [15]:
div = len(sampler.divergent_iterations())
print("There were " + str(div) + " divergent iterations.")