MatPlotLib Basics

Draw a line graph


In [1]:
%matplotlib inline
from scipy.stats import norm
import matplotlib.pyplot as plt
import numpy as np

x = np.arange(-3, 3, 0.01)

plt.plot(x, norm.pdf(x))
plt.show()


Mutiple Plots on One Graph


In [3]:
plt.plot(x, norm.pdf(x))
plt.plot(x, norm.pdf(x, 1.0, 0.5))
plt.show()


Save it to a File


In [4]:
plt.plot(x, norm.pdf(x))
plt.plot(x, norm.pdf(x, 1.0, 0.5))
plt.savefig('C:\\Users\\Frank\\MyPlot.png', format='png')


Adjust the Axes


In [5]:
axes = plt.axes()
axes.set_xlim([-5, 5])
axes.set_ylim([0, 1.0])
axes.set_xticks([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])
axes.set_yticks([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
plt.plot(x, norm.pdf(x))
plt.plot(x, norm.pdf(x, 1.0, 0.5))
plt.show()


Add a Grid


In [6]:
axes = plt.axes()
axes.set_xlim([-5, 5])
axes.set_ylim([0, 1.0])
axes.set_xticks([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])
axes.set_yticks([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
axes.grid()
plt.plot(x, norm.pdf(x))
plt.plot(x, norm.pdf(x, 1.0, 0.5))
plt.show()


Change Line Types and Colors


In [3]:
axes = plt.axes()
axes.set_xlim([-5, 5])
axes.set_ylim([0, 1.0])
axes.set_xticks([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])
axes.set_yticks([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
axes.grid()
plt.plot(x, norm.pdf(x), 'b-')
plt.plot(x, norm.pdf(x, 1.0, 0.5), 'r:')
plt.show()


Labeling Axes and Adding a Legend


In [8]:
axes = plt.axes()
axes.set_xlim([-5, 5])
axes.set_ylim([0, 1.0])
axes.set_xticks([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])
axes.set_yticks([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
axes.grid()
plt.xlabel('Greebles')
plt.ylabel('Probability')
plt.plot(x, norm.pdf(x), 'b-')
plt.plot(x, norm.pdf(x, 1.0, 0.5), 'r:')
plt.legend(['Sneetches', 'Gacks'], loc=4)
plt.show()


XKCD Style :)


In [9]:
plt.xkcd()

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
plt.xticks([])
plt.yticks([])
ax.set_ylim([-30, 10])

data = np.ones(100)
data[70:] -= np.arange(30)

plt.annotate(
    'THE DAY I REALIZED\nI COULD COOK BACON\nWHENEVER I WANTED',
    xy=(70, 1), arrowprops=dict(arrowstyle='->'), xytext=(15, -10))

plt.plot(data)

plt.xlabel('time')
plt.ylabel('my overall health')


Out[9]:
<matplotlib.text.Text at 0xa84cdd8>

Pie Chart


In [10]:
# Remove XKCD mode:
plt.rcdefaults()

values = [12, 55, 4, 32, 14]
colors = ['r', 'g', 'b', 'c', 'm']
explode = [0, 0, 0.2, 0, 0]
labels = ['India', 'United States', 'Russia', 'China', 'Europe']
plt.pie(values, colors= colors, labels=labels, explode = explode)
plt.title('Student Locations')
plt.show()


Bar Chart


In [11]:
values = [12, 55, 4, 32, 14]
colors = ['r', 'g', 'b', 'c', 'm']
plt.bar(range(0,5), values, color= colors)
plt.show()


Scatter Plot


In [14]:
from pylab import randn

X = randn(500)
Y = randn(500)
plt.scatter(X,Y)
plt.show()


Histogram


In [15]:
incomes = np.random.normal(27000, 15000, 10000)
plt.hist(incomes, 50)
plt.show()


Box & Whisker Plot

Useful for visualizing the spread & skew of data.

The red line represents the median of the data, and the box represents the bounds of the 1st and 3rd quartiles.

So, half of the data exists within the box.

The dotted-line "whiskers" indicate the range of the data - except for outliers, which are plotted outside the whiskers. Outliers are 1.5X or more the interquartile range.

This example below creates uniformly distributed random numbers between -40 and 60, plus a few outliers above 100 and below -100:


In [16]:
uniformSkewed = np.random.rand(100) * 100 - 40
high_outliers = np.random.rand(10) * 50 + 100
low_outliers = np.random.rand(10) * -50 - 100
data = np.concatenate((uniformSkewed, high_outliers, low_outliers))
plt.boxplot(data)
plt.show()


Activity

Try creating a scatter plot representing random data on age vs. time spent watching TV. Label the axes.


In [ ]: