The NDE in a slab is given by
$$ -\frac{d}{dx}D(x)\frac{d\phi(x)}{dx} + \bigg ( \Sigma_a + \frac{\alpha}{v} \bigg ) \phi(x) = \frac{1}{k}\nu \Sigma_f \phi(x) $$
where $D(x)$ is the diffusion coefficient, $\Sigma_a$ and $\Sigma_f$ are the absorption and fission macroscopic cross sections, $\nu$ is the average number of neutrons emitted in fission, $k$ is k-effective, and $\alpha$ is the alpha-eigenvalue.
In [16]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
In [17]:
D = 0.9
nusigf = 0.70
siga = 0.066
In [18]:
#Lx = np.pi*((nusigf-siga)/D)**(-0.5)
Lx = 15.0
N = 55;
h = Lx/(N-1)
x = np.zeros(N)
for i in range(N-1):
x[i+1] = x[i] + h
In [19]:
L = np.zeros((N,N))
A = np.zeros((N,N))
M = np.zeros((N,N))
for i in range(N):
L[i][i] = L[i][i] + (-2*(-D/(h**2)))
for i in range(1,N):
L[i][i-1] = L[i][i-1] + (1*(-D/h**2))
for i in range(N-1):
L[i][i+1] = L[i][i+1] + (1*(-D/h**2))
Using Hill's (LANL) algorithm, we calculate the $\alpha$-eigenvalue as follows:
Problems:
1) If the system is subcritical enough
\begin{equation} \frac{\alpha}{v} - \Sigma_{a} < 0 \end{equation}which causes instabilities (confirm by looking at the condition number of matrix iterations). Need to add parameter to prevent this according to Warsa and Fichtl.
2) Bad guesses of $\alpha_0$ causes algorithm to fail and does not converge.
In [20]:
#Generate flux vector
#Tolerance, k-effective and alpha initial guesses, alpha-eigenvalue modifier
tol = 1e-10
k = 1.00
alpha = 0.0
evm = 0.01
#Alpha-eigenvalue outer iteration
for j in range(1,100):
kprev = k
A = np.zeros((N,N))
phi0 = np.ones((N,1))
phi0[0] = 0
phi0[N-1] = 0
k = 1.0
for i in range(N):
A[i][i] = A[i][i] + siga + alpha
M = L + A
M[0][0] = 1
M[0][1] = 0
M[N-1][N-1] = 1
M[N-1][N-2] = 0
#k-effective inner iteration
for i in range(100):
kold = k
psi = np.linalg.solve(M,nusigf*phi0)
k = sum(nusigf*psi)/sum(nusigf*phi0)
phi0 = (1/k)*psi
phi0[0] = 0
phi0[N-1] = 0
residual = np.abs(k-kold)
if residual <= tol:
break
#Modify alpha-eigenvalue after first iteration, or linearly extrapolate new guess such that k equals 1
#Reminder: does not calculate both k and alpha
if j == 2:
alpha_prev = alpha
alpha = alpha + evm
elif j > 2:
#print "alpha-alpha_prev = ", alpha-alpha_prev
#print "alpha = ", alpha
#print "alpha_prev = ", alpha_prev
#print "j = ", j
if abs(alpha - alpha_prev) < tol:
break
alpha_new = alpha_prev + (1-kprev)/(k-kprev)*(alpha-alpha_prev)
alpha_prev = alpha
alpha = alpha_new
else:
continue
#if abs(k-1) < tol:
# print "alpha = ", alpha
# print "k-effective = ", k
# break
#print("abs(k-1) = %.20f" % abs(k-1))
print("alpha = %.15f" % alpha)
print('k-effective = %.15f' % k)
#plt.plot(x,phi0)
#plt.xlabel('Slab (cm)')
#plt.ylabel('Neutron Flux')
#plt.grid()
#print " alpha = ", (k-1)/k * sum(nusigf*phi0)/sum(phi0)
In [ ]: