In [1]:
from data.geographic.arcgis import getStockData
from data.geographic.shapefileGeo import testSQLAlchemyORM, shapefileTest, generateWorldToDB
from data.geographic.geo import AddInformationUsingDataFrame, GisMapUpdate
from data.geographic.geo2 import makeMapLayer

import pandas as pd
import geopandas as gp
from shapely.geometry import Point

In [2]:
df_main = getStockData()
shapefile
---------------
- test to print shapefile content 
- divided to two files dbf and shp
- uses dictionaries as resultsets to contain data related to location and the location as polycon

Using datasets geopandas for country and city statistics OR Using the gadm28 dataset  
- http://stackoverflow.com/questions/31997859/bulk-insert-a-pandas-dataframe-using-sqlalchemy

crs (coordinate system )

http://stackoverflow.com/questions/3845006/database-of-countries-and-their-cities

In [2]:
'''
Load location data using pre-existing routines
'''
naturalEarthToCSV = True
    
if naturalEarthToCSV:
    # to load into DB reverse getAsPandasDataFrame flag 
    gp_world, gp_cities = generateWorldToDB(loadCSV = True, getAsPandasDataFrame = False)  
    
    print ('Countries: ', gp_world)
    print ('Cities: ', gp_cities)


Countries:                     continent  gdp_md_est  \
0                       Asia     22270.0   
1                     Africa    110300.0   
2                     Europe     21810.0   
3                       Asia    184300.0   
4              South America    573900.0   
5                       Asia     18770.0   
6                 Antarctica       760.4   
7    Seven seas (open ocean)        16.0   
8                    Oceania    800200.0   
9                     Europe    329500.0   
10                      Asia     77610.0   
11                    Africa      3102.0   
12                    Europe    389300.0   
13                    Africa     12830.0   
14                    Africa     17820.0   
15                      Asia    224000.0   
16                    Europe     93750.0   
17             North America      9093.0   
18                    Europe     29700.0   
19                    Europe    114100.0   
20             North America      2536.0   
21             South America     43270.0   
22             South America   1993000.0   
23                      Asia     20250.0   
24                      Asia      3524.0   
25                    Africa     27060.0   
26                    Africa      3198.0   
27             North America   1300000.0   
28                    Europe    316700.0   
29             South America    244500.0   
..                       ...         ...   
147                   Europe     80340.0   
148            South America      4254.0   
149                   Europe    119500.0   
150                   Europe     59340.0   
151                   Europe    344300.0   
152                   Africa      5702.0   
153                     Asia     98830.0   
154                   Africa     15860.0   
155                   Africa      5118.0   
156                     Asia    547400.0   
157                     Asia     13160.0   
158                     Asia     29780.0   
159                     Asia      2520.0   
160            North America     29010.0   
161                   Africa     81710.0   
162                     Asia    902700.0   
163                     Asia    712000.0   
164                   Africa     54250.0   
165                   Africa     39380.0   
166                   Europe    339800.0   
167            South America     43160.0   
168            North America  15094000.0   
169                     Asia     71670.0   
170            South America    357400.0   
171                     Asia    241700.0   
172                  Oceania       988.5   
173                     Asia     55280.0   
174                   Africa    491000.0   
175                   Africa     17500.0   
176                   Africa      9323.0   

                                              geometry iso_a3  \
0    POLYGON ((61.21081709172574 35.65007233330923,...    AFG   
1    (POLYGON ((16.32652835456705 -5.87747039146621...    AGO   
2    POLYGON ((20.59024743010491 41.85540416113361,...    ALB   
3    POLYGON ((51.57951867046327 24.24549713795111,...    ARE   
4    (POLYGON ((-65.50000000000003 -55.199999999999...    ARG   
5    POLYGON ((43.58274580259273 41.09214325618257,...    ARM   
6    (POLYGON ((-59.57209469261153 -80.040178725096...    ATA   
7    POLYGON ((68.935 -48.62500000000001, 69.58 -48...    ATF   
8    (POLYGON ((145.3979781434948 -40.7925485166058...    AUS   
9    POLYGON ((16.97966678230404 48.12349701597631,...    AUT   
10   (POLYGON ((45.0019873390568 39.7400035670496, ...    AZE   
11   POLYGON ((29.33999759290035 -4.499983412294092...    BDI   
12   POLYGON ((3.314971144228537 51.34578095153609,...    BEL   
13   POLYGON ((2.691701694356254 6.258817246928629,...    BEN   
14   POLYGON ((-2.827496303712707 9.642460842319778...    BFA   
15   POLYGON ((92.67272098182556 22.04123891854125,...    BGD   
16   POLYGON ((22.65714969248299 44.23492300066128,...    BGR   
17   (POLYGON ((-77.53465999999997 23.7597499999999...    BHS   
18   POLYGON ((19.00548628101012 44.86023366960916,...    BIH   
19   POLYGON ((23.48412763844985 53.91249766704114,...    BLR   
20   POLYGON ((-89.14308041050332 17.80831899664932...    BLZ   
21   POLYGON ((-62.84646847192156 -22.0349854468694...    BOL   
22   POLYGON ((-57.62513342958296 -30.2162948544542...    BRA   
23   POLYGON ((114.2040165548284 4.525873928236805,...    BRN   
24   POLYGON ((91.69665652869668 27.77174184825166,...    BTN   
25   POLYGON ((25.64916344575016 -18.53602589281899...    BWA   
26   POLYGON ((15.27946048346911 7.421924546737969,...    CAF   
27   (POLYGON ((-63.66449999999998 46.5500099999999...    CAN   
28   POLYGON ((9.59422610844635 47.52505809182027, ...    CHE   
29   (POLYGON ((-68.63401022758316 -52.636370458874...    CHL   
..                                                 ...    ...   
147  POLYGON ((20.87431277841341 45.41637543393432,...    SRB   
148  POLYGON ((-57.14743648947689 5.973149929219161...    SUR   
149  POLYGON ((18.85314415861362 49.49622976337764,...    SVK   
150  POLYGON ((13.80647545742153 46.50930613869122,...    SVN   
151  POLYGON ((22.18317345550193 65.72374054632017,...    SWE   
152  POLYGON ((32.07166548028107 -26.73382008230491...    SWZ   
153  POLYGON ((38.79234052913608 33.37868642835222,...    SYR   
154  POLYGON ((14.4957873877629 12.85939626713736, ...    TCD   
155  POLYGON ((1.865240512712319 6.142157701029731,...    TGO   
156  POLYGON ((102.5849324890267 12.18659495691328,...    THA   
157  POLYGON ((71.01419803252017 40.24436554621823,...    TJK   
158  POLYGON ((61.21081709172574 35.65007233330923,...    TKM   
159  POLYGON ((124.9686824891162 -8.892790215697083...    TLS   
160  POLYGON ((-61.68000000000001 10.76, -61.105 10...    TTO   
161  POLYGON ((9.482139926805274 30.30755605724619,...    TUN   
162  (POLYGON ((36.91312706884216 41.33535838476431...    TUR   
163  POLYGON ((121.7778178243899 24.3942735865194, ...    TWN   
164  POLYGON ((33.9037111971046 -0.9499999999999886...    TZA   
165  POLYGON ((31.86617000000007 -1.027359999999931...    UGA   
166  POLYGON ((31.78599816257159 52.10167796488545,...    UKR   
167  POLYGON ((-57.62513342958296 -30.2162948544542...    URY   
168  (POLYGON ((-155.54211 19.08348000000001, -155....    USA   
169  POLYGON ((66.51860680528867 37.36278432875879,...    UZB   
170  POLYGON ((-71.3315836249503 11.77628408451581,...    VEN   
171  POLYGON ((108.0501802917829 21.55237986906012,...    VNM   
172  (POLYGON ((167.8448767438451 -16.4663331030971...    VUT   
173  POLYGON ((53.10857262554751 16.65105113368895,...    YEM   
174  POLYGON ((31.52100141777888 -29.25738697684626...    ZAF   
175  POLYGON ((32.75937544122132 -9.23059905358906,...    ZMB   
176  POLYGON ((31.19140913262129 -22.2515096981724,...    ZWE   

                       name      pop_est  
0               Afghanistan   28400000.0  
1                    Angola   12799293.0  
2                   Albania    3639453.0  
3      United Arab Emirates    4798491.0  
4                 Argentina   40913584.0  
5                   Armenia    2967004.0  
6                Antarctica       3802.0  
7    Fr. S. Antarctic Lands        140.0  
8                 Australia   21262641.0  
9                   Austria    8210281.0  
10               Azerbaijan    8238672.0  
11                  Burundi    8988091.0  
12                  Belgium   10414336.0  
13                    Benin    8791832.0  
14             Burkina Faso   15746232.0  
15               Bangladesh  156050883.0  
16                 Bulgaria    7204687.0  
17                  Bahamas     309156.0  
18         Bosnia and Herz.    4613414.0  
19                  Belarus    9648533.0  
20                   Belize     307899.0  
21                  Bolivia    9775246.0  
22                   Brazil  198739269.0  
23                   Brunei     388190.0  
24                   Bhutan     691141.0  
25                 Botswana    1990876.0  
26     Central African Rep.    4511488.0  
27                   Canada   33487208.0  
28              Switzerland    7604467.0  
29                    Chile   16601707.0  
..                      ...          ...  
147                  Serbia    7379339.0  
148                Suriname     481267.0  
149                Slovakia    5463046.0  
150                Slovenia    2005692.0  
151                  Sweden    9059651.0  
152               Swaziland    1123913.0  
153                   Syria   20178485.0  
154                    Chad   10329208.0  
155                    Togo    6019877.0  
156                Thailand   65905410.0  
157              Tajikistan    7349145.0  
158            Turkmenistan    4884887.0  
159             Timor-Leste    1131612.0  
160     Trinidad and Tobago    1310000.0  
161                 Tunisia   10486339.0  
162                  Turkey   76805524.0  
163                  Taiwan   22974347.0  
164                Tanzania   41048532.0  
165                  Uganda   32369558.0  
166                 Ukraine   45700395.0  
167                 Uruguay    3494382.0  
168           United States  313973000.0  
169              Uzbekistan   27606007.0  
170               Venezuela   26814843.0  
171                 Vietnam   86967524.0  
172                 Vanuatu     218519.0  
173                   Yemen   23822783.0  
174            South Africa   49052489.0  
175                  Zambia   11862740.0  
176                Zimbabwe   12619600.0  

[177 rows x 6 columns]
Cities:                                            geometry              name
0      POINT (12.45338654497177 41.90328217996012)      Vatican City
1        POINT (12.44177015780014 43.936095834768)        San Marino
2      POINT (9.516669472907267 47.13372377429357)             Vaduz
3      POINT (6.130002806227083 49.61166037912108)        Luxembourg
4      POINT (158.1499743237623 6.916643696007725)           Palikir
5      POINT (171.3800001757465 7.103004311216239)            Majuro
6     POINT (179.2166470940289 -8.516651999041073)          Funafuti
7      POINT (134.6265484669922 7.487396172977981)          Melekeok
8      POINT (7.406913173465057 43.73964568785249)            Monaco
9      POINT (173.0175708285494 1.338187505624603)            Tarawa
10    POINT (43.24024409869332 -11.70415769566847)            Moroni
11       POINT (1.51648596050552 42.5000014435459)           Andorra
12    POINT (-61.51703088544974 10.65199708957726)     Port-of-Spain
13     POINT (30.05858591906411 -1.95164421006325)            Kigali
14    POINT (31.13333451205636 -26.31665077840921)           Mbabane
15     POINT (31.58002559278731 4.829975198277964)              Juba
16      POINT (14.51496903347413 46.0552883087945)         Ljubljana
17     POINT (17.11698075223461 48.15001832996171)        Bratislava
18      POINT (51.5329678942993 25.28655600890659)              Doha
19     POINT (19.26630692411823 42.46597251288171)         Podgorica
20     POINT (7.466975462482424 46.91668275866772)              Bern
21     POINT (21.16598425159987 42.66670961411938)          Pristina
22    POINT (-61.38701298180337 15.30101564428332)            Roseau
23     POINT (43.14800166705226 11.59501446425548)          Djibouti
24     POINT (-16.5917014892126 13.45387646031594)            Banjul
25      POINT (21.4334614651425 42.00000612290586)            Skopje
26    POINT (-59.61652673505159 13.10200258275114)        Bridgetown
27     POINT (29.3600060615284 -3.376087220374643)         Bujumbura
28    POINT (-61.21206242027932 13.14827882786841)         Kingstown
29    POINT (-61.00000818036955 14.00197348933034)          Castries
..                                             ...               ...
172    POINT (4.914694317400972 52.35191454666443)         Amsterdam
173    POINT (126.9977851382019 37.56829495838895)             Seoul
174    POINT (120.9802713035424 14.60610481344054)            Manila
175    POINT (13.39960276470055 52.52376452225116)            Berlin
176   POINT (15.31302602317174 -4.327778243275986)          Kinshasa
177    POINT (77.19998002005303 28.60002300924543)         New Delhi
178    POINT (23.73137522567936 37.98527209055226)            Athens
179    POINT (44.39192291456413 33.34059435615865)           Baghdad
180    POINT (38.69805857534868 9.035256221295754)       Addis Ababa
181     POINT (51.42239817500899 35.6738886270013)            Tehran
182  POINT (-58.39947723233144 -34.60055574990741)      Buenos Aires
183    POINT (69.18131419070505 34.51863614490031)             Kabul
184    POINT (16.36469309674374 48.20196113681686)            Vienna
185      POINT (121.568333333333 25.0358333333333)            Taipei
186   POINT (-77.01136443943716 38.90149523508705)  Washington, D.C.
187   POINT (-0.1186677024759319 51.5019405883275)            London
188    POINT (46.77079579868825 24.64277900781644)            Riyadh
189   POINT (18.43304229922603 -33.91806510862875)         Cape Town
190     POINT (37.6135769672714 55.75410998124818)            Moscow
191   POINT (-99.13293406029391 19.44438830141547)       Mexico City
192      POINT (12.481312562874 41.89790148509894)              Rome
193    POINT (116.3863398256594 39.93083808990906)           Beijing
194   POINT (36.81471100047145 -1.281400883237779)           Nairobi
195   POINT (106.8274917624701 -6.172471846798885)           Jakarta
196   POINT (-74.08528981377441 4.598369421147822)            Bogota
197    POINT (31.24802236112612 30.05190620510371)             Cairo
198    POINT (139.7494615705447 35.68696276437117)             Tokyo
199     POINT (2.33138946713035 48.86863878981461)             Paris
200   POINT (-70.66898671317483 -33.4480679569341)          Santiago
201     POINT (103.853874819099 1.294979325105942)         Singapore

[202 rows x 2 columns]

In [9]:
'''
all available fields:  ['OBJECTID', 'UID', 'ID_0', 'ISO', 'NAME_0', 
'ID_1', 'NAME_1', 'VARNAME_1', 'NL_NAME_1', 'HASC_1', 'CCN_1', 'CCA_1', 'TYPE_1', 'ENGTYPE_1', 'VALIDFR_1', 'VALIDTO_1', 'REMARKS_1', 
'ID_2', 'NAME_2', 'VARNAME_2', 'NL_NAME_2', 'HASC_2', 'CCN_2', 'CCA_2', 'TYPE_2', 'ENGTYPE_2', 'VALIDFR_2', 'VALIDTO_2', 'REMARKS_2', 
'ID_3', 'NAME_3', 'VARNAME_3', 'NL_NAME_3', 'HASC_3', 'CCN_3', 'CCA_3', 'TYPE_3', 'ENGTYPE_3', 'VALIDFR_3', 'VALIDTO_3', 'REMARKS_3', 
'ID_4', 'NAME_4', 'VARNAME_4', 'CCN_4', 'CCA_4', 'TYPE_4', 'ENGTYPE_4', 'VALIDFR_4', 'VALIDTO_4', 'REMARKS_4', 
'ID_5', 'NAME_5', 'CCN_5', 'CCA_5', 'TYPE_5', 'ENGTYPE_5', 'REGION', 'VARREGION', 'Shape_Leng', 'Shape_Area']
'''

loadShapefileData = False         # load shapefile content as dictionary from i instance to i_max - slow
esriShapefileToGeopandas = True   # use geopandas to read shapefile to Dataframe - fast

if loadShapefileData:
    shapefileTest(i = 0, i_max = 1)

if esriShapefileToGeopandas:
    '''
    Usefull fields 
    'OBJECTID', 'geometry', 'UID', 'ID_0', 'ISO', 'NAME_0', 
         'REGION', 'VARREGION', 'Shape_Leng', 'Shape_Area'
         
         'ID_1', 'NAME_1', 
         'ID_2', 'NAME_2', 
         'ID_3', 'NAME_3', 
         'ID_4', 'NAME_4', 
         'ID_5', 'NAME_5', 
    '''
    shp = gp.GeoDataFrame.from_file('./gadm28/gadm28.shp')
    shp_1 = shp[['OBJECTID', 'geometry']]
    shp = shp[['OBJECTID', 'UID', 'ID_0', 'ISO', 'NAME_0', 'REGION', 
                   'VARREGION', 'Shape_Leng', 'Shape_Area', 'ID_1', 'NAME_1','ID_2', 'NAME_2',
                   'ID_3', 'NAME_3', 'ID_4', 'NAME_4', 'ID_5', 'NAME_5']]
 
    #save X,Y into csv file
    #shp.to_csv("./data/allData.csv",header=True,index=False,sep="\t")
    #shp_1.to_csv("./data/allData_geom.csv",header=True,index=False,sep="\t")

In [4]:
'''
Combine, transpose and store data stored into dataframe 

    cities: Country,City,AccentCity,Region,Population,Latitude,Longitude
        - Country, City, Population,Latitude,Longitude - link to add iso3 
        
    countrycodes: euname,modified,linked_country,iso3,iso2,grc,isonum,country,imperitive
        - country, iso3, iso2
            
    - define datasets
    - merge with country
    - add geometry  
    - store to csv  
'''  


combineDataForCities = True        
if combineDataForCities: 
    df_cities = pd.read_csv("./data/worldcitiespop.csv", sep = ',', encoding = "ISO-8859-1", header = 0,  
                            names=['Country','City','AccentCity','Region','Population','Latitude','Longitude'])
    df_cities = df_cities[['Country','City','Region','Population','Latitude','Longitude']]
    df_cities.columns = ['iso2', 'City','Region','Population','Latitude','Longitude']
    df_cities['iso2'] = df_cities['iso2'].str.upper()
    df_cities = df_cities[df_cities['Population'] > 50000]
        
    df_countryCodes = pd.read_csv("./data/countryISO2, 3.csv", sep = ',', header = 0,
                                  names=['euname','modified','linked_country','iso3','iso2','grc','isonum','country','imperitive'])
    df_countryCodes = df_countryCodes[['country', 'iso3', 'iso2']]
        
    df_main = pd.merge(df_cities, df_countryCodes, on='iso2', how='inner')
        

    geometry = [Point(xy) for xy in zip(df_main.Longitude, df_main.Latitude)]
    crs = {'init': 'epsg:4326'}
    df_geo = gp.GeoDataFrame(df_main, crs=crs, geometry=geometry)


C:\python\New folder\lib\site-packages\IPython\core\interactiveshell.py:2717: DtypeWarning: Columns (3) have mixed types. Specify dtype option on import or set low_memory=False.
  interactivity=interactivity, compiler=compiler, result=result)

In [3]:
'''
df_main contains the end-result used as the arcgis feature-layer. 
It contains the share prise indexed with the company symbol with daily adjusted close column used as changeable values 
    in fixex table. The constraint for fixed table setup is required by arcgis.
The dataframe merges location data and stock data from separate sources.
'''
df_main


Out[3]:
0 a b c d e f g h Latitude Longitude
symbol
A 45.298838 46.076585 45.907077 45.837280 46.066615 46.375718 45.588002 45.639999 45.560001 37.354168 -121.954170
AAL 48.580002 49.220001 49.470001 48.689999 48.480000 48.610001 47.669998 47.250000 46.689999 32.725277 -97.320557
AAP 173.760621 175.570000 173.509995 170.389999 170.889999 171.839996 170.419998 170.279999 169.119995 37.270832 -79.941666
AAPL 116.639999 116.949997 117.059998 116.290001 116.519997 117.260002 116.760002 116.730003 115.820000 37.323055 -122.031113
ABBV 61.598480 61.539078 60.836172 61.044073 61.717281 61.875682 61.647980 62.103384 61.994483 41.849998 -87.650002
ABT 38.093934 37.944896 37.994578 38.044256 38.173419 38.352264 37.974706 38.064128 38.163485 41.849998 -87.650002
ACN 123.650002 124.099998 117.900002 117.790001 117.480003 117.550003 116.610001 117.010002 117.129997 53.333057 -6.248889
ADBE 105.290001 105.769997 105.510002 104.720001 105.019997 104.980003 103.769997 103.680000 102.949997 37.339443 -121.893890
ADM 46.070000 46.220001 46.130001 45.180000 45.150002 45.650002 45.340000 45.360001 45.650002 34.605835 -86.983330
ADM 46.070000 46.220001 46.130001 45.180000 45.150002 45.650002 45.340000 45.360001 45.650002 39.840279 -88.954720
ADS 230.960007 231.339996 233.679993 231.660004 233.639999 233.710007 228.570007 229.250000 228.500000 33.019722 -96.698608
ADSK 75.699997 76.010002 75.629997 74.580002 76.000000 75.980003 75.019997 74.980003 74.010002 37.973610 -122.529999
AEP 62.939999 63.209999 62.799999 63.240002 63.169998 63.130001 62.389999 63.279999 62.959999 32.460834 -84.987778
AEP 62.939999 63.209999 62.799999 63.240002 63.169998 63.130001 62.389999 63.279999 62.959999 39.961113 -82.998886
AES 11.840000 11.940000 11.980000 11.780000 11.730000 11.860000 11.640000 11.700000 11.620000 32.735554 -97.107780
AES 11.840000 11.940000 11.980000 11.780000 11.730000 11.860000 11.640000 11.700000 11.620000 38.890278 -77.084442
AET 123.848133 124.377056 123.099655 124.436939 125.694377 125.973815 124.327162 124.197421 123.758319 41.763611 -72.685555
AFL 69.790001 69.860001 70.300003 70.379997 70.150002 70.400002 69.800003 69.830002 69.599998 32.460834 -84.987778
AFL 69.790001 69.860001 70.300003 70.379997 70.150002 70.400002 69.800003 69.830002 69.599998 39.961113 -82.998886
AGN 192.550003 191.330002 193.990005 193.990005 199.080002 200.490005 204.059998 207.210007 210.009995 53.333057 -6.248889
AIG 66.540001 66.599998 66.660004 66.230003 66.410004 66.699997 65.879997 65.500000 65.309998 40.714169 -74.006386
AIV 44.570000 44.840000 43.970001 44.549999 44.740002 44.310001 44.230000 44.700001 45.450001 39.739166 -104.984169
AIZ 92.410004 92.300003 92.320000 93.190002 93.279999 93.739998 93.190002 92.669998 92.860001 40.714169 -74.006386
AKAM 67.760002 68.699997 67.870003 67.370003 67.629997 68.089996 67.269997 67.040001 66.680000 42.375000 -71.106110
ALB 89.000000 89.339996 89.279999 88.419998 88.820000 89.010002 86.580002 87.070000 86.080002 30.450556 -91.154442
ALK 90.330002 91.559998 91.120003 89.099998 90.430000 90.540001 88.690002 88.529999 88.730003 47.606388 -122.330833
ALLE 64.910004 65.330002 65.550003 65.250000 65.389999 65.540001 64.800003 64.769997 64.000000 53.333057 -6.248889
AMAT 32.439999 32.610001 32.580002 33.009998 32.900002 33.330002 32.900002 32.660000 32.270000 37.354168 -121.954170
AME 49.139999 49.470001 49.299999 49.419998 49.450001 49.709999 48.750000 48.660000 48.599998 41.850555 -87.793610
AMGN 147.740005 147.220001 146.169998 146.360001 147.550003 148.360001 147.669998 147.779999 146.210007 34.170555 -118.836670
... ... ... ... ... ... ... ... ... ... ... ...
VLO 67.449997 67.570000 67.930000 68.720001 68.959999 69.449997 68.669998 68.629997 68.320000 29.423889 -98.493332
VMC 124.180000 125.949997 126.190002 125.309998 125.589996 127.540001 126.849998 127.250000 125.150002 33.520557 -86.802498
VNO 103.224796 103.999651 102.370467 102.370467 102.191653 102.320793 101.645277 102.171781 103.681762 40.714169 -74.006386
VRSK 82.110001 82.370003 82.430000 82.070000 82.110001 82.150002 81.650002 81.699997 81.169998 40.728054 -74.078056
VRTX 76.300003 76.440002 72.599998 72.019997 74.309998 75.190002 74.589996 74.440002 73.669998 42.375000 -71.106110
VTR 61.790001 61.930000 61.150002 61.169998 60.860001 61.529999 61.160000 61.730000 62.520000 41.849998 -87.650002
VZ 52.350300 52.558078 52.409667 53.082474 53.112155 53.072578 52.874692 53.171522 52.815330 40.714169 -74.006386
WAT 136.130005 136.330002 135.639999 135.720001 136.210007 136.509995 134.660004 134.500000 134.389999 41.222221 -73.056946
WDC 67.872898 68.458690 68.726770 69.689860 69.848716 69.669998 69.209999 68.430000 67.949997 33.669445 -117.822220
WEC 58.160000 58.450001 58.459999 58.709999 58.730000 58.570000 57.900002 58.849998 58.650002 43.038887 -87.906387
WFC 55.220001 56.099998 55.709999 55.750000 55.959999 55.950001 55.320000 54.840000 55.110001 37.775002 -122.418335
WFM 32.292208 32.242436 32.361889 31.714852 31.764624 31.575489 31.077767 30.868724 30.619863 30.266945 -97.742775
WLTW 123.152506 123.361694 122.514978 122.375520 124.009185 123.799997 122.379997 122.169998 122.279999 51.514126 -0.093689
WM 71.089996 71.139999 70.690002 70.790001 70.919998 70.959999 70.959999 71.010002 70.910004 29.763056 -95.363052
WMB 30.760000 30.350000 30.620001 30.299999 31.559999 31.780001 31.040001 31.010000 31.139999 36.153889 -95.992500
WRK 52.310001 52.480000 52.320000 51.529999 51.889999 52.270000 51.529999 51.610001 50.770000 37.935833 -122.346664
WRK 52.310001 52.480000 52.320000 51.529999 51.889999 52.270000 51.529999 51.610001 50.770000 37.553612 -77.460556
WY 30.469999 30.690001 30.820000 30.620001 30.570000 30.430000 29.889999 30.350000 30.090000 47.322498 -122.311386
WYNN 90.120003 88.309998 89.269997 88.250000 88.339996 88.239998 87.080002 87.169998 86.510002 36.174999 -115.136391
XEC 137.589996 136.149994 135.929993 136.770004 135.720001 136.710007 136.440002 136.320007 135.899994 39.739166 -104.984169
XEL 40.421245 40.639418 40.570000 40.669998 40.669998 40.730000 40.290001 40.939999 40.700001 44.980000 -93.263611
XL 37.070000 37.279999 37.529999 37.669998 37.990002 38.029999 37.700001 37.259998 37.259998 39.399445 -84.561386
XLNX 58.610001 59.959999 60.240002 60.189999 60.560001 61.240002 60.630001 60.740002 60.369999 37.339443 -121.893890
XOM 90.419998 90.430000 90.279999 90.870003 90.709999 90.750000 90.300003 90.349998 90.260002 32.813889 -96.948608
XRX 6.013459 6.079324 5.987113 5.934421 5.894902 5.888316 5.769759 5.743413 5.749999 41.117500 -73.408333
XRX 6.013459 6.079324 5.987113 5.934421 5.894902 5.888316 5.769759 5.743413 5.749999 33.902222 -118.080833
XYL 50.759998 50.919998 50.830002 51.130001 51.009998 50.860001 49.939999 49.770000 49.520000 41.033890 -73.763336
YHOO 38.419998 39.160000 39.150002 38.500000 38.660000 38.919998 38.730000 38.639999 38.669998 37.368889 -122.035278
YUM 63.744341 63.923511 63.893650 63.754297 63.515404 63.734385 63.425819 63.336234 63.037620 38.254166 -85.759445
ZION 42.700001 43.910000 43.639999 43.740002 43.860001 43.930000 43.279999 42.790001 43.040001 40.760834 -111.890274

432 rows × 11 columns


In [ ]: