In [36]:
f(x)=a+b*log(x)
a=0
b=0
set title "Fire Calls"
set xlabel "Dia"
set ylabel "Frecuencia"
fit f(x) 'FireG.txt' via a,b
plot "FireG.txt" u 1:2 t "llamada relacionada a Fuego",f(x) t "Probabilidad"
Out[36]:
f(x)=a+b*log(x)
a=0
b=0
set title "Fire Calls"
set xlabel "Dia"
set ylabel "Frecuencia"
fit f(x) 'FireG.txt' via a,b
Iteration 0
WSSR : 1.23282e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 1.20109
initial set of free parameter values
a = 1e-30
b = 1e-30
/
Iteration 1
WSSR : 113180 delta(WSSR)/WSSR : -9.89256
delta(WSSR) : -1.11964e+06 limit for stopping : 1e-05
lambda : 0.120109
resultant parameter values
a = 57.4879
b = -0.00703163
/
Iteration 2
WSSR : 113084 delta(WSSR)/WSSR : -0.000849052
delta(WSSR) : -96.0141 limit for stopping : 1e-05
lambda : 0.0120109
resultant parameter values
a = 58.6452
b = -0.754679
/
Iteration 3
WSSR : 113084 delta(WSSR)/WSSR : -7.07391e-11
delta(WSSR) : -7.99945e-06 limit for stopping : 1e-05
lambda : 0.00120109
resultant parameter values
a = 58.6456
b = -0.754909
After 3 iterations the fit converged.
final sum of squares of residuals : 113084
rel. change during last iteration : -7.07391e-11
degrees of freedom (FIT_NDF) : 334
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 18.4004
variance of residuals (reduced chisquare) = WSSR/ndf : 338.574
Final set of parameters Asymptotic Standard Error
======================= ==========================
a = 58.6456 +/- 2.174 (3.707%)
b = -0.754909 +/- 1.583 (209.7%)
correlation matrix of the fit parameters:
a b
a 1.000
b -0.887 1.000
set output '/tmp/gnuplot-inline-1478537688.76.219280889571.png'
plot "FireG.txt" u 1:2 t "llamada relacionada a Fuego",f(x) t "Probabilidad"
unset output
In [6]:
f(x)=a+b*log(x)
set size nosquare 1,1
set title "Traffic Calls"
set xlabel "Dia"
set ylabel "Frecuencia"
a=0
b=0
fit f(x) 'TrafficG.txt' via a,b
plot "TrafficG.txt"u 1:2 t "llamada relacionada a trafico" ,f(x) t "Probabilidad"
Out[6]:
f(x)=a+b*log(x)
set size nosquare 1,1
set title "Traffic Calls"
set xlabel "Dia"
set ylabel "Frecuencia"
a=0
b=0
fit f(x) 'TrafficG.txt' via a,b
Iteration 0
WSSR : 7.12225e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 1.20109
initial set of free parameter values
a = 1e-30
b = 1e-30
/
Iteration 1
WSSR : 752394 delta(WSSR)/WSSR : -8.46611
delta(WSSR) : -6.36986e+06 limit for stopping : 1e-05
lambda : 0.120109
resultant parameter values
a = 151.384
b = -12.0121
/
Iteration 2
WSSR : 751658 delta(WSSR)/WSSR : -0.000979385
delta(WSSR) : -736.163 limit for stopping : 1e-05
lambda : 0.0120109
resultant parameter values
a = 154.588
b = -14.109
/
Iteration 3
WSSR : 751658 delta(WSSR)/WSSR : -8.22144e-11
delta(WSSR) : -6.17971e-05 limit for stopping : 1e-05
lambda : 0.00120109
resultant parameter values
a = 154.589
b = -14.1096
After 3 iterations the fit converged.
final sum of squares of residuals : 751658
rel. change during last iteration : -8.22144e-11
degrees of freedom (FIT_NDF) : 334
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 47.4392
variance of residuals (reduced chisquare) = WSSR/ndf : 2250.47
Final set of parameters Asymptotic Standard Error
======================= ==========================
a = 154.589 +/- 5.605 (3.626%)
b = -14.1096 +/- 4.082 (28.93%)
correlation matrix of the fit parameters:
a b
a 1.000
b -0.887 1.000
set output '/tmp/gnuplot-inline-1478538074.94.719945722536.png'
plot "TrafficG.txt"u 1:2 t "llamada relacionada a trafico" ,f(x) t "Probabilidad"
unset output
In [43]:
f(x)=a+b*log(x)
set title "EMS Calls"
set xlabel "Dia"
set ylabel "Frecuencia"
a=0
b=0
fit f(x) 'EMSG.txt' via a,b
plot "EMSG.txt" u 1:2 t "llamada relacionada a EMS",f(x) t "Probabilidad"
Out[43]:
f(x)=a+b*log(x)
set title "EMS Calls"
set xlabel "Dia"
set ylabel "Frecuencia"
a=0
b=0
fit f(x) 'EMSG.txt' via a,b
Iteration 0
WSSR : 1.21674e+07 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 1.20109
initial set of free parameter values
a = 1e-30
b = 1e-30
/
Iteration 1
WSSR : 246566 delta(WSSR)/WSSR : -48.3473
delta(WSSR) : -1.19208e+07 limit for stopping : 1e-05
lambda : 0.120109
resultant parameter values
a = 189.882
b = -1.9312
/
Iteration 2
WSSR : 245505 delta(WSSR)/WSSR : -0.00432228
delta(WSSR) : -1061.14 limit for stopping : 1e-05
lambda : 0.0120109
resultant parameter values
a = 193.729
b = -4.42104
/
Iteration 3
WSSR : 245505 delta(WSSR)/WSSR : -3.60492e-10
delta(WSSR) : -8.85026e-05 limit for stopping : 1e-05
lambda : 0.00120109
resultant parameter values
a = 193.73
b = -4.42181
After 3 iterations the fit converged.
final sum of squares of residuals : 245505
rel. change during last iteration : -3.60492e-10
degrees of freedom (FIT_NDF) : 334
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 27.1117
variance of residuals (reduced chisquare) = WSSR/ndf : 735.045
Final set of parameters Asymptotic Standard Error
======================= ==========================
a = 193.73 +/- 3.203 (1.653%)
b = -4.42181 +/- 2.333 (52.76%)
correlation matrix of the fit parameters:
a b
a 1.000
b -0.887 1.000
set output '/tmp/gnuplot-inline-1478537810.54.410121406365.png'
plot "EMSG.txt" u 1:2 t "llamada relacionada a EMS",f(x) t "Probabilidad"
unset output
Content source: manuela98/Emergencias_911_
Similar notebooks: