Probabilidad de recibir una llamada relacionada a Fuego


In [36]:
f(x)=a+b*log(x)
a=0
b=0
set title "Fire Calls"
set xlabel "Dia" 
set ylabel "Frecuencia"
fit f(x) 'FireG.txt' via a,b
plot "FireG.txt" u 1:2 t "llamada relacionada a Fuego",f(x) t "Probabilidad"


Out[36]:
f(x)=a+b*log(x)
a=0
b=0
set title "Fire Calls"
set xlabel "Dia" 
set ylabel "Frecuencia"
fit f(x) 'FireG.txt' via a,b


 Iteration 0
 WSSR        : 1.23282e+06       delta(WSSR)/WSSR   : 0
 delta(WSSR) : 0                 limit for stopping : 1e-05
 lambda	  : 1.20109

initial set of free parameter values

a               = 1e-30
b               = 1e-30
/

 Iteration 1
 WSSR        : 113180            delta(WSSR)/WSSR   : -9.89256
 delta(WSSR) : -1.11964e+06      limit for stopping : 1e-05
 lambda	  : 0.120109

resultant parameter values

a               = 57.4879
b               = -0.00703163
/

 Iteration 2
 WSSR        : 113084            delta(WSSR)/WSSR   : -0.000849052
 delta(WSSR) : -96.0141          limit for stopping : 1e-05
 lambda	  : 0.0120109

resultant parameter values

a               = 58.6452
b               = -0.754679
/

 Iteration 3
 WSSR        : 113084            delta(WSSR)/WSSR   : -7.07391e-11
 delta(WSSR) : -7.99945e-06      limit for stopping : 1e-05
 lambda	  : 0.00120109

resultant parameter values

a               = 58.6456
b               = -0.754909

After 3 iterations the fit converged.
final sum of squares of residuals : 113084
rel. change during last iteration : -7.07391e-11

degrees of freedom    (FIT_NDF)                        : 334
rms of residuals      (FIT_STDFIT) = sqrt(WSSR/ndf)    : 18.4004
variance of residuals (reduced chisquare) = WSSR/ndf   : 338.574

Final set of parameters            Asymptotic Standard Error
=======================            ==========================

a               = 58.6456          +/- 2.174        (3.707%)
b               = -0.754909        +/- 1.583        (209.7%)


correlation matrix of the fit parameters:

               a      b      
a               1.000 
b              -0.887  1.000 
set output '/tmp/gnuplot-inline-1478537688.76.219280889571.png'
plot "FireG.txt" u 1:2 t "llamada relacionada a Fuego",f(x) t "Probabilidad"
unset output

Probabilidad de recibir una llamada relacionada con el Trafico


In [6]:
f(x)=a+b*log(x)
set size nosquare 1,1
set title "Traffic Calls"
set xlabel "Dia" 
set ylabel "Frecuencia"
a=0
b=0
fit f(x) 'TrafficG.txt' via a,b
plot "TrafficG.txt"u 1:2  t "llamada relacionada a trafico" ,f(x) t "Probabilidad"


Out[6]:
f(x)=a+b*log(x)
set size nosquare 1,1
set title "Traffic Calls"
set xlabel "Dia" 
set ylabel "Frecuencia"
a=0
b=0
fit f(x) 'TrafficG.txt' via a,b


 Iteration 0
 WSSR        : 7.12225e+06       delta(WSSR)/WSSR   : 0
 delta(WSSR) : 0                 limit for stopping : 1e-05
 lambda	  : 1.20109

initial set of free parameter values

a               = 1e-30
b               = 1e-30
/

 Iteration 1
 WSSR        : 752394            delta(WSSR)/WSSR   : -8.46611
 delta(WSSR) : -6.36986e+06      limit for stopping : 1e-05
 lambda	  : 0.120109

resultant parameter values

a               = 151.384
b               = -12.0121
/

 Iteration 2
 WSSR        : 751658            delta(WSSR)/WSSR   : -0.000979385
 delta(WSSR) : -736.163          limit for stopping : 1e-05
 lambda	  : 0.0120109

resultant parameter values

a               = 154.588
b               = -14.109
/

 Iteration 3
 WSSR        : 751658            delta(WSSR)/WSSR   : -8.22144e-11
 delta(WSSR) : -6.17971e-05      limit for stopping : 1e-05
 lambda	  : 0.00120109

resultant parameter values

a               = 154.589
b               = -14.1096

After 3 iterations the fit converged.
final sum of squares of residuals : 751658
rel. change during last iteration : -8.22144e-11

degrees of freedom    (FIT_NDF)                        : 334
rms of residuals      (FIT_STDFIT) = sqrt(WSSR/ndf)    : 47.4392
variance of residuals (reduced chisquare) = WSSR/ndf   : 2250.47

Final set of parameters            Asymptotic Standard Error
=======================            ==========================

a               = 154.589          +/- 5.605        (3.626%)
b               = -14.1096         +/- 4.082        (28.93%)


correlation matrix of the fit parameters:

               a      b      
a               1.000 
b              -0.887  1.000 
set output '/tmp/gnuplot-inline-1478538074.94.719945722536.png'
plot "TrafficG.txt"u 1:2  t "llamada relacionada a trafico" ,f(x) t "Probabilidad"
unset output

Probabilidad de recibir una llamada relacionada a EMS


In [43]:
f(x)=a+b*log(x)
set title "EMS Calls"
set xlabel "Dia" 
set ylabel "Frecuencia"
a=0
b=0
fit f(x) 'EMSG.txt' via a,b
plot "EMSG.txt" u 1:2 t "llamada relacionada a EMS",f(x) t "Probabilidad"


Out[43]:
f(x)=a+b*log(x)
set title "EMS Calls"
set xlabel "Dia" 
set ylabel "Frecuencia"
a=0
b=0
fit f(x) 'EMSG.txt' via a,b


 Iteration 0
 WSSR        : 1.21674e+07       delta(WSSR)/WSSR   : 0
 delta(WSSR) : 0                 limit for stopping : 1e-05
 lambda	  : 1.20109

initial set of free parameter values

a               = 1e-30
b               = 1e-30
/

 Iteration 1
 WSSR        : 246566            delta(WSSR)/WSSR   : -48.3473
 delta(WSSR) : -1.19208e+07      limit for stopping : 1e-05
 lambda	  : 0.120109

resultant parameter values

a               = 189.882
b               = -1.9312
/

 Iteration 2
 WSSR        : 245505            delta(WSSR)/WSSR   : -0.00432228
 delta(WSSR) : -1061.14          limit for stopping : 1e-05
 lambda	  : 0.0120109

resultant parameter values

a               = 193.729
b               = -4.42104
/

 Iteration 3
 WSSR        : 245505            delta(WSSR)/WSSR   : -3.60492e-10
 delta(WSSR) : -8.85026e-05      limit for stopping : 1e-05
 lambda	  : 0.00120109

resultant parameter values

a               = 193.73
b               = -4.42181

After 3 iterations the fit converged.
final sum of squares of residuals : 245505
rel. change during last iteration : -3.60492e-10

degrees of freedom    (FIT_NDF)                        : 334
rms of residuals      (FIT_STDFIT) = sqrt(WSSR/ndf)    : 27.1117
variance of residuals (reduced chisquare) = WSSR/ndf   : 735.045

Final set of parameters            Asymptotic Standard Error
=======================            ==========================

a               = 193.73           +/- 3.203        (1.653%)
b               = -4.42181         +/- 2.333        (52.76%)


correlation matrix of the fit parameters:

               a      b      
a               1.000 
b              -0.887  1.000 
set output '/tmp/gnuplot-inline-1478537810.54.410121406365.png'
plot "EMSG.txt" u 1:2 t "llamada relacionada a EMS",f(x) t "Probabilidad"
unset output