Iteration i= 0 , train accuracy= 0.11 , loss= 2.62957
test accuracy= 0.16
Iteration i= 1 , train accuracy= 0.23 , loss= 2.3591
test accuracy= 0.23
Iteration i= 2 , train accuracy= 0.24 , loss= 2.28646
test accuracy= 0.25
Iteration i= 3 , train accuracy= 0.23 , loss= 2.20308
test accuracy= 0.28
Iteration i= 4 , train accuracy= 0.19 , loss= 2.15221
test accuracy= 0.32
Iteration i= 5 , train accuracy= 0.33 , loss= 2.10529
test accuracy= 0.33
Iteration i= 6 , train accuracy= 0.39 , loss= 2.00862
test accuracy= 0.38
Iteration i= 7 , train accuracy= 0.38 , loss= 1.93917
test accuracy= 0.39
Iteration i= 8 , train accuracy= 0.42 , loss= 1.80285
test accuracy= 0.44
Iteration i= 9 , train accuracy= 0.47 , loss= 1.74397
test accuracy= 0.52
Iteration i= 10 , train accuracy= 0.53 , loss= 1.68617
test accuracy= 0.52
Iteration i= 11 , train accuracy= 0.53 , loss= 1.63493
test accuracy= 0.54
Iteration i= 12 , train accuracy= 0.55 , loss= 1.59938
test accuracy= 0.57
Iteration i= 13 , train accuracy= 0.59 , loss= 1.554
test accuracy= 0.59
Iteration i= 14 , train accuracy= 0.6 , loss= 1.51773
test accuracy= 0.61
Iteration i= 15 , train accuracy= 0.63 , loss= 1.51477
test accuracy= 0.64
Iteration i= 16 , train accuracy= 0.61 , loss= 1.47688
test accuracy= 0.63
Iteration i= 17 , train accuracy= 0.68 , loss= 1.39394
test accuracy= 0.6
Iteration i= 18 , train accuracy= 0.65 , loss= 1.43529
test accuracy= 0.64
Iteration i= 19 , train accuracy= 0.58 , loss= 1.41979
test accuracy= 0.64
Iteration i= 20 , train accuracy= 0.59 , loss= 1.42947
test accuracy= 0.65
Iteration i= 21 , train accuracy= 0.61 , loss= 1.38538
test accuracy= 0.67
Iteration i= 22 , train accuracy= 0.6 , loss= 1.3769
test accuracy= 0.69
Iteration i= 23 , train accuracy= 0.63 , loss= 1.39994
test accuracy= 0.7
Iteration i= 24 , train accuracy= 0.68 , loss= 1.25396
test accuracy= 0.69
Iteration i= 25 , train accuracy= 0.65 , loss= 1.30319
test accuracy= 0.72
Iteration i= 26 , train accuracy= 0.69 , loss= 1.33592
test accuracy= 0.72
Iteration i= 27 , train accuracy= 0.68 , loss= 1.23335
test accuracy= 0.74
Iteration i= 28 , train accuracy= 0.77 , loss= 1.14386
test accuracy= 0.73
Iteration i= 29 , train accuracy= 0.72 , loss= 1.13069
test accuracy= 0.71
Iteration i= 30 , train accuracy= 0.78 , loss= 1.15764
test accuracy= 0.72
Iteration i= 31 , train accuracy= 0.73 , loss= 1.15789
test accuracy= 0.76
Iteration i= 32 , train accuracy= 0.7 , loss= 1.14777
test accuracy= 0.75
Iteration i= 33 , train accuracy= 0.74 , loss= 1.11072
test accuracy= 0.74
Iteration i= 34 , train accuracy= 0.79 , loss= 1.10595
test accuracy= 0.77
Iteration i= 35 , train accuracy= 0.72 , loss= 1.1696
test accuracy= 0.78
Iteration i= 36 , train accuracy= 0.75 , loss= 1.0789
test accuracy= 0.77
Iteration i= 37 , train accuracy= 0.79 , loss= 1.01109
test accuracy= 0.77
Iteration i= 38 , train accuracy= 0.89 , loss= 0.819416
test accuracy= 0.78
Iteration i= 39 , train accuracy= 0.7 , loss= 1.08737
test accuracy= 0.77
Iteration i= 40 , train accuracy= 0.83 , loss= 0.915718
test accuracy= 0.77
Iteration i= 41 , train accuracy= 0.83 , loss= 0.937208
test accuracy= 0.77
Iteration i= 42 , train accuracy= 0.8 , loss= 1.03092
test accuracy= 0.76
Iteration i= 43 , train accuracy= 0.83 , loss= 0.941506
test accuracy= 0.76
Iteration i= 44 , train accuracy= 0.74 , loss= 1.01248
test accuracy= 0.79
Iteration i= 45 , train accuracy= 0.85 , loss= 0.819709
test accuracy= 0.79
Iteration i= 46 , train accuracy= 0.82 , loss= 0.841836
test accuracy= 0.79
Iteration i= 47 , train accuracy= 0.76 , loss= 0.968287
test accuracy= 0.79
Iteration i= 48 , train accuracy= 0.84 , loss= 0.942129
test accuracy= 0.78
Iteration i= 49 , train accuracy= 0.82 , loss= 0.884058
test accuracy= 0.78