Image features exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

We have seen that we can achieve reasonable performance on an image classification task by training a linear classifier on the pixels of the input image. In this exercise we will show that we can improve our classification performance by training linear classifiers not on raw pixels but on features that are computed from the raw pixels.

All of your work for this exercise will be done in this notebook.


In [3]:
import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# for auto-reloading extenrnal modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2


The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload

Load data

Similar to previous exercises, we will load CIFAR-10 data from disk.


In [4]:
from cs231n.features import color_histogram_hsv, hog_feature

def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000):
  # Load the raw CIFAR-10 data
  cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
  X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
  
  # Subsample the data
  mask = range(num_training, num_training + num_validation)
  X_val = X_train[mask]
  y_val = y_train[mask]
  mask = range(num_training)
  X_train = X_train[mask]
  y_train = y_train[mask]
  mask = range(num_test)
  X_test = X_test[mask]
  y_test = y_test[mask]

  return X_train, y_train, X_val, y_val, X_test, y_test

X_train, y_train, X_val, y_val, X_test, y_test = get_CIFAR10_data()

Extract Features

For each image we will compute a Histogram of Oriented Gradients (HOG) as well as a color histogram using the hue channel in HSV color space. We form our final feature vector for each image by concatenating the HOG and color histogram feature vectors.

Roughly speaking, HOG should capture the texture of the image while ignoring color information, and the color histogram represents the color of the input image while ignoring texture. As a result, we expect that using both together ought to work better than using either alone. Verifying this assumption would be a good thing to try for the bonus section.

The hog_feature and color_histogram_hsv functions both operate on a single image and return a feature vector for that image. The extract_features function takes a set of images and a list of feature functions and evaluates each feature function on each image, storing the results in a matrix where each column is the concatenation of all feature vectors for a single image.


In [5]:
from cs231n.features import *

num_color_bins = 10 # Number of bins in the color histogram
feature_fns = [hog_feature, lambda img: color_histogram_hsv(img, nbin=num_color_bins)]
X_train_feats = extract_features(X_train, feature_fns, verbose=True)
X_val_feats = extract_features(X_val, feature_fns)
X_test_feats = extract_features(X_test, feature_fns)

# Preprocessing: Subtract the mean feature
mean_feat = np.mean(X_train_feats, axis=0, keepdims=True)
X_train_feats -= mean_feat
X_val_feats -= mean_feat
X_test_feats -= mean_feat

# Preprocessing: Divide by standard deviation. This ensures that each feature
# has roughly the same scale.
std_feat = np.std(X_train_feats, axis=0, keepdims=True)
X_train_feats /= std_feat
X_val_feats /= std_feat
X_test_feats /= std_feat

# Preprocessing: Add a bias dimension
X_train_feats = np.hstack([X_train_feats, np.ones((X_train_feats.shape[0], 1))])
X_val_feats = np.hstack([X_val_feats, np.ones((X_val_feats.shape[0], 1))])
X_test_feats = np.hstack([X_test_feats, np.ones((X_test_feats.shape[0], 1))])


Done extracting features for 1000 / 49000 images
Done extracting features for 2000 / 49000 images
Done extracting features for 3000 / 49000 images
Done extracting features for 4000 / 49000 images
Done extracting features for 5000 / 49000 images
Done extracting features for 6000 / 49000 images
Done extracting features for 7000 / 49000 images
Done extracting features for 8000 / 49000 images
Done extracting features for 9000 / 49000 images
Done extracting features for 10000 / 49000 images
Done extracting features for 11000 / 49000 images
Done extracting features for 12000 / 49000 images
Done extracting features for 13000 / 49000 images
Done extracting features for 14000 / 49000 images
Done extracting features for 15000 / 49000 images
Done extracting features for 16000 / 49000 images
Done extracting features for 17000 / 49000 images
Done extracting features for 18000 / 49000 images
Done extracting features for 19000 / 49000 images
Done extracting features for 20000 / 49000 images
Done extracting features for 21000 / 49000 images
Done extracting features for 22000 / 49000 images
Done extracting features for 23000 / 49000 images
Done extracting features for 24000 / 49000 images
Done extracting features for 25000 / 49000 images
Done extracting features for 26000 / 49000 images
Done extracting features for 27000 / 49000 images
Done extracting features for 28000 / 49000 images
Done extracting features for 29000 / 49000 images
Done extracting features for 30000 / 49000 images
Done extracting features for 31000 / 49000 images
Done extracting features for 32000 / 49000 images
Done extracting features for 33000 / 49000 images
Done extracting features for 34000 / 49000 images
Done extracting features for 35000 / 49000 images
Done extracting features for 36000 / 49000 images
Done extracting features for 37000 / 49000 images
Done extracting features for 38000 / 49000 images
Done extracting features for 39000 / 49000 images
Done extracting features for 40000 / 49000 images
Done extracting features for 41000 / 49000 images
Done extracting features for 42000 / 49000 images
Done extracting features for 43000 / 49000 images
Done extracting features for 44000 / 49000 images
Done extracting features for 45000 / 49000 images
Done extracting features for 46000 / 49000 images
Done extracting features for 47000 / 49000 images
Done extracting features for 48000 / 49000 images

Train SVM on features

Using the multiclass SVM code developed earlier in the assignment, train SVMs on top of the features extracted above; this should achieve better results than training SVMs directly on top of raw pixels.


In [6]:
# Use the validation set to tune the learning rate and regularization strength

from cs231n.classifiers.linear_classifier import LinearSVM

learning_rates = [1e-7, 3e-7,5e-7]
regularization_strengths = [5e4, 1e4]

results = {}
best_val = -1   # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation rate.
num_iters = 1000


################################################################################
# TODO:                                                                        #
# Use the validation set to set the learning rate and regularization strength. #
# This should be identical to the validation that you did for the SVM; save    #
# the best trained classifer in best_svm. You might also want to play          #
# with different numbers of bins in the color histogram. If you are careful    #
# you should be able to get accuracy of near 0.44 on the validation set.       #
################################################################################
for learning_rate in learning_rates:
    for regularization_strength in regularization_strengths:
        print "learning_rage {:.2e}, regularization_strength {:.2e}".format(learning_rate, regularization_strength)
        #train it
        svm = LinearSVM()
        svm.train(X_train_feats, y_train, learning_rate=learning_rate, reg=regularization_strength,
                      num_iters=num_iters, verbose=True)
        #predict
        y_train_pred = svm.predict(X_train_feats)
        training_accuracy = np.mean(y_train == y_train_pred)
        y_val_pred = svm.predict(X_val_feats)
        validation_accuracy = np.mean(y_val == y_val_pred)
        results[(learning_rate,regularization_strength)] = training_accuracy, validation_accuracy
        print "train accurcy {}, validation {}".format(training_accuracy, validation_accuracy)
        if validation_accuracy > best_val:
            best_val = validation_accuracy
            best_svm = svm
################################################################################
#                              END OF YOUR CODE                                #
################################################################################

# Print out results.
for lr, reg in sorted(results):
    train_accuracy, val_accuracy = results[(lr, reg)]
    print 'lr %e reg %e train accuracy: %f val accuracy: %f' % (
                lr, reg, train_accuracy, val_accuracy)
    
print 'best validation accuracy achieved during cross-validation: %f' % best_val


learning_rage 1.00e-07, regularization_strength 5.00e+04
iteration 0 / 1000: loss 44.928856
iteration 100 / 1000: loss 22.195409
iteration 200 / 1000: loss 13.832238
iteration 300 / 1000: loss 10.776883
iteration 400 / 1000: loss 9.649647
iteration 500 / 1000: loss 9.238295
iteration 600 / 1000: loss 9.086919
iteration 700 / 1000: loss 9.031424
iteration 800 / 1000: loss 9.010923
iteration 900 / 1000: loss 9.003491
train accurcy 0.339469387755, validation 0.321
learning_rage 1.00e-07, regularization_strength 1.00e+04
iteration 0 / 1000: loss 16.509794
iteration 100 / 1000: loss 15.144133
iteration 200 / 1000: loss 14.026313
iteration 300 / 1000: loss 13.128074
iteration 400 / 1000: loss 12.365415
iteration 500 / 1000: loss 11.757668
iteration 600 / 1000: loss 11.257620
iteration 700 / 1000: loss 10.845018
iteration 800 / 1000: loss 10.512615
iteration 900 / 1000: loss 10.238588
train accurcy 0.129755102041, validation 0.125
learning_rage 3.00e-07, regularization_strength 5.00e+04
iteration 0 / 1000: loss 47.808927
iteration 100 / 1000: loss 10.885859
iteration 200 / 1000: loss 9.091087
iteration 300 / 1000: loss 9.003903
iteration 400 / 1000: loss 8.999340
iteration 500 / 1000: loss 8.999422
iteration 600 / 1000: loss 8.999374
iteration 700 / 1000: loss 8.999187
iteration 800 / 1000: loss 8.999357
iteration 900 / 1000: loss 8.999262
train accurcy 0.412346938776, validation 0.411
learning_rage 3.00e-07, regularization_strength 1.00e+04
iteration 0 / 1000: loss 16.967850
iteration 100 / 1000: loss 13.362023
iteration 200 / 1000: loss 11.390381
iteration 300 / 1000: loss 10.313667
iteration 400 / 1000: loss 9.717252
iteration 500 / 1000: loss 9.390573
iteration 600 / 1000: loss 9.211946
iteration 700 / 1000: loss 9.116033
iteration 800 / 1000: loss 9.062714
iteration 900 / 1000: loss 9.032945
train accurcy 0.283408163265, validation 0.282
learning_rage 5.00e-07, regularization_strength 5.00e+04
iteration 0 / 1000: loss 50.410557
iteration 100 / 1000: loss 9.261730
iteration 200 / 1000: loss 9.001045
iteration 300 / 1000: loss 8.999237
iteration 400 / 1000: loss 8.999260
iteration 500 / 1000: loss 8.999314
iteration 600 / 1000: loss 8.999429
iteration 700 / 1000: loss 8.999350
iteration 800 / 1000: loss 8.999339
iteration 900 / 1000: loss 8.999315
train accurcy 0.411979591837, validation 0.417
learning_rage 5.00e-07, regularization_strength 1.00e+04
iteration 0 / 1000: loss 16.901055
iteration 100 / 1000: loss 11.886969
iteration 200 / 1000: loss 10.056990
iteration 300 / 1000: loss 9.382654
iteration 400 / 1000: loss 9.141173
iteration 500 / 1000: loss 9.049726
iteration 600 / 1000: loss 9.015169
iteration 700 / 1000: loss 9.003752
iteration 800 / 1000: loss 8.999159
iteration 900 / 1000: loss 8.997375
train accurcy 0.410673469388, validation 0.405
lr 1.000000e-07 reg 1.000000e+04 train accuracy: 0.129755 val accuracy: 0.125000
lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.339469 val accuracy: 0.321000
lr 3.000000e-07 reg 1.000000e+04 train accuracy: 0.283408 val accuracy: 0.282000
lr 3.000000e-07 reg 5.000000e+04 train accuracy: 0.412347 val accuracy: 0.411000
lr 5.000000e-07 reg 1.000000e+04 train accuracy: 0.410673 val accuracy: 0.405000
lr 5.000000e-07 reg 5.000000e+04 train accuracy: 0.411980 val accuracy: 0.417000
best validation accuracy achieved during cross-validation: 0.417000

In [7]:
# Evaluate your trained SVM on the test set
y_test_pred = best_svm.predict(X_test_feats)
test_accuracy = np.mean(y_test == y_test_pred)
print test_accuracy


0.416

In [8]:
# An important way to gain intuition about how an algorithm works is to
# visualize the mistakes that it makes. In this visualization, we show examples
# of images that are misclassified by our current system. The first column
# shows images that our system labeled as "plane" but whose true label is
# something other than "plane".

examples_per_class = 8
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for cls, cls_name in enumerate(classes):
    idxs = np.where((y_test != cls) & (y_test_pred == cls))[0]
    idxs = np.random.choice(idxs, examples_per_class, replace=False)
    for i, idx in enumerate(idxs):
        plt.subplot(examples_per_class, len(classes), i * len(classes) + cls + 1)
        plt.imshow(X_test[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls_name)
plt.show()


Inline question 1:

Describe the misclassification results that you see. Do they make sense?
Answer: HOGS features describe the distribution of intensity gradients or edge directions in an image. Color histogram features discribes the distribution of colors in an image. To be honest, for some misclassified images, their shape or color might be a bit ambigous and can be passed for incorrectly, but most of them are easily recognizalbe, at least for human.

Neural Network on image features

Earlier in this assigment we saw that training a two-layer neural network on raw pixels achieved better classification performance than linear classifiers on raw pixels. In this notebook we have seen that linear classifiers on image features outperform linear classifiers on raw pixels.

For completeness, we should also try training a neural network on image features. This approach should outperform all previous approaches: you should easily be able to achieve over 55% classification accuracy on the test set; our best model achieves about 60% classification accuracy.


In [9]:
print X_train_feats.shape


(49000, 155)

In [12]:
from cs231n.classifiers.neural_net import TwoLayerNet

input_dim = X_train_feats.shape[1]
hidden_dim = 500
num_classes = 10
num_iters = 1800
batch_size=200
# hyperparameters
learning_rate = 5e-1
reg = 1e-6
learning_rate_decay = 0.95

net = TwoLayerNet(input_dim, hidden_dim, num_classes)
net.train(X_train_feats, y_train, X_val_feats, y_val,
                              num_iters=num_iters,
                              batch_size=batch_size,
                              learning_rate=learning_rate,
                              learning_rate_decay= learning_rate_decay,
                              reg=reg,
                              verbose=False)
# Predict on the validation set
val_acc = (net.predict(X_val_feats) == y_val).mean()
train_acc = (net.predict(X_train_feats) == y_train).mean()
print 'Train accuracy:{}, Validation accuracy:{}'.format(train_acc, val_acc)

################################################################################
# TODO: Train a two-layer neural network on image features. You may want to    #
# cross-validate various parameters as in previous sections. Store your best   #
# model in the best_net variable.                                              #
################################################################################

################################################################################
#                              END OF YOUR CODE                                #
################################################################################


Epoch:0/7, Train accuracy:0.155, Validation accuracy:0.098, loss2.30258473043,update_ration_w1:3.0e-02,update_ration_w2:1.3e-01
Epoch:1/7, Train accuracy:0.53, Validation accuracy:0.506, loss1.46737367492,update_ration_w1:6.3e-02,update_ration_w2:4.3e-02
Epoch:2/7, Train accuracy:0.645, Validation accuracy:0.532, loss1.15054304647,update_ration_w1:4.4e-02,update_ration_w2:3.6e-02
Epoch:3/7, Train accuracy:0.755, Validation accuracy:0.557, loss1.06855396073,update_ration_w1:3.7e-02,update_ration_w2:3.1e-02
Epoch:4/7, Train accuracy:0.755, Validation accuracy:0.558, loss1.0588843421,update_ration_w1:3.4e-02,update_ration_w2:2.6e-02
Epoch:5/7, Train accuracy:0.825, Validation accuracy:0.582, loss0.86045755609,update_ration_w1:2.9e-02,update_ration_w2:2.0e-02
Epoch:6/7, Train accuracy:0.82, Validation accuracy:0.584, loss1.11133201039,update_ration_w1:3.0e-02,update_ration_w2:2.6e-02
Epoch:7/7, Train accuracy:0.835, Validation accuracy:0.577, loss0.994453549514,update_ration_w1:3.0e-02,update_ration_w2:2.6e-02
Train accuracy:0.716551020408, Validation accuracy:0.59

In [13]:
# Run your neural net classifier on the test set. You should be able to
# get more than 55% accuracy.

test_acc = (net.predict(X_test_feats) == y_test).mean()
print test_acc


0.566

Bonus: Design your own features!

You have seen that simple image features can improve classification performance. So far we have tried HOG and color histograms, but other types of features may be able to achieve even better classification performance.

For bonus points, design and implement a new type of feature and use it for image classification on CIFAR-10. Explain how your feature works and why you expect it to be useful for image classification. Implement it in this notebook, cross-validate any hyperparameters, and compare its performance to the HOG + Color histogram baseline.

Bonus: Do something extra!

Use the material and code we have presented in this assignment to do something interesting. Was there another question we should have asked? Did any cool ideas pop into your head as you were working on the assignment? This is your chance to show off!