Notes on implementation:
In [10]:
%pylab inline
$\newcommand{\bPhi}{\mathbf{\Phi}}$ $\newcommand{\bx}{\mathbf{x}}$ $\newcommand{\bw}{\mathbf{w}}$ $\newcommand{\bt}{\mathbf{t}}$ $\newcommand{\by}{\mathbf{y}}$ $\newcommand{\bm}{\mathbf{m}}$ $\newcommand{\bS}{\mathbf{S}}$ $\newcommand{\bI}{\mathbf{I}}$
Write a method gen_sinusoidal(N)
that generates toy data like in fig 1.2 of the MLPR book. The method should have a parameter $N$, and should return $N$-dimensional vectors $\bx$ and $\bt$, where $\bx$ contains evenly spaced values from 0 to (including) 2$\pi$, and the elements $t_i$ of $\bt$ are distributed according to:
where $x_i$ is the $i$-th elements of $\bf{x}$, the mean $\mu = sin(x_i)$ and the standard deviation $\sigma = 0.2$.
In [15]:
from pylab import *
import math
import matplotlib.pyplot as plt
import numpy as np
def gen_sinusoidal(n):
'''
QUESTION 1.1
Generates toy data like in MLPR book
Returns N-dimensional vectors x and t, where.
x contains evenly spaced values from 0 to 2pi
and elements ti of t are distributed according
to ti ~ N(mean, variance) where xi is the ith
element of x, the mean = sin(xi) and
standard deviation = 0.2
x, t = gen_sinusoidal(10)
'''
x = np.linspace(0, 2*math.pi, n)
t = []
sigma = 0.2
for i in x:
mu = math.sin(i)
s = np.random.normal(mu, sigma)
t.append(s)
return x, array(t)
Write a method fit_polynomial(x, t, M)
that finds the maximum-likelihood solution of an unregularized $M$-th order polynomial for some dataset x
. The error function to minimize w.r.t. $\bw$ is:
$E(\bw) = \frac{1}{2} (\bPhi\bw - \bt)^T(\bPhi\bw - \bt)$
where $\bPhi$ is the feature matrix (or design matrix) as explained in the MLPR book, $\bt$ is the vector of target values. Your method should return a vector $\bw$ with the maximum-likelihood parameter estimates.
In [16]:
def create_phi(x, m):
"""
x, t = gen_sinusoidal(10)
create_phi(x, 5)
"""
if m < 0:
raise ValueError('m can not be negative')
# plus one for the non-optional first element of the bias vector ^0
m += 1
# create array of exponents [0, 1, ..., m-1]
phi = array(range(m))
# reserve space for NxM design matrix
Phi = zeros((size(x), m))
for n, x_elem in enumerate(x):
# create array filled with m copies of the nth datapoint
x_ar = array([x_elem] * m)
# multiply with the bias vector
Phi[n] = x_ar ** phi
return matrix(Phi)
def fit_polynomial(x, t, m):
'''
QUESTION 1.2
Finds maximum-likelihood solution of.
unregularized M-th order fit_polynomial for dataset x using t as the target vector.
Returns w -> maximum-likelihood parameter
estimates
x, t = gen_sinusoidal(10)
w = fit_polynomial(x, t, 3)
'''
phi = create_phi(x, m)
# solve for w
return phi.T.dot(phi).I.dot(phi.T).dot(t)
Sample a dataset with $N=9$, and fit four polynomials with $M \in (0, 1, 3, 9)$.
For each value of $M$, plot the prediction function, along with the data and the original sine function. The resulting figure should look similar to fig 1.4 of the MLPR book. Note that you can use matplotlib's plt.pyplot(.)
functionality for creating grids of figures.
In [19]:
def plot_sine(linspace, label=None):
t = array([math.sin(i) for i in linspace])
if label:
plt.plot(linspace, t, label=label)
else:
plt.plot(linspace, t)
def plot_polynomial(linspace, w, color='g', label=None):
""" plots a function for a w over a given range for x"""
# for each x: sum for all m: w[m]*x**m
f = [sum(w.item(p) * (x_point ** p) for p in range(size(w, 1))) for x_point in linspace]
# make pretty plot
if label:
plt.plot(linspace, f, color=color, label=label)
else:
plt.plot(linspace, f, color=color)
def one_point_three():
"""
QUESTION 1.3
"""
N = 10
orders = [0, 1, 3, 9]
res = 1000
x, t = gen_sinusoidal(N)
linspace = np.linspace(0, 2*math.pi, res)
for i, m in enumerate(orders):
w = fit_polynomial(x, t, m)
plt.subplot(2, 2, i+1)
plt.xlabel('x')
plt.ylabel('t')
plt.xlim(0, 2*math.pi)
plt.ylim(-1.5, 1.5)
plt.title('m=%d'%m)
plt.tight_layout()
plt.plot(x, t, 'o')
plot_sine(linspace)
plot_polynomial(linspace, w)
plt.show()
one_point_three()
Write a method fit_polynomial_reg(x, t, M, lamb)
that fits a regularized $M$-th order polynomial to the sinusoidal data, as discussed in the lectures, where lamb
is the regularization term lambda. (Note that 'lambda' cannot be used as a variable name in Python since it has a special meaning). The error function to minimize w.r.t. $\bw$:
$E(\bw) = \frac{1}{2} (\bPhi\bw - \bt)^T(\bPhi\bw - \bt) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$
For background, see section 3.1.4 of the MLPR book.
In [ ]:
def fit_polynomial_reg(x, t, m, lamb):
"""
x, t = gen_sinusoidal(10)
w = fit_polynomial_reg(x, t, 3)
"""
Phi = create_phi(x, m)
i = np.eye(np.size(Phi, 1))
w = (lamb * i)
w = (w + Phi.T.dot(Phi)).I
w = w.dot(Phi.T).dot(t)
return w
Use cross-validation to find a good choice of $M$ and $\lambda$, given a dataset of $N=9$ datapoints generated with gen_sinusoidal(9)
. You should write a function that tries (loops over) a reasonable range of choices of $M$ and $\lambda$, and returns the choice with the best cross-validation error. In this case you can use $K=9$ folds, corresponding to leave-one-out crossvalidation.
You can let $M \in (0, 1, ..., 10)$, and let $\lambda \in (e^{-10}, e^{-9}, ..., e^{0})$.
To get you started, here's a method you can use to generate indices of cross-validation folds.
In [11]:
def kfold_indices(N, k):
all_indices = np.arange(N,dtype=int)
np.random.shuffle(all_indices)
idx = np.floor(np.linspace(0,N,k+1))
train_folds = []
valid_folds = []
for fold in range(k):
valid_indices = all_indices[idx[fold]:idx[fold+1]]
valid_folds.append(valid_indices)
train_folds.append(np.setdiff1d(all_indices, valid_indices))
return train_folds, valid_folds
Create a comprehensible plot of the cross-validation error for each choice of $M$ and $\lambda$. Highlight the best choice.
Question: Explain over-fitting and underfitting, illuminated by your plot. Explain the relationship with model bias and model variance.
Answer: Overfitting occurs when the model has learned the training data too well. This means that the noise is learned and not the real distribution over the data. The error for the training data will be low but for new data it will be (much) higher. This can be see in the plot at higher values for m.
Underfitting occurs when a model is learned that is too simple. This means it can not get good results for either the test set or the training set. This can be seen in the plot at the lower values for m.
Low bias and high variance leads to underfitting (model too simple) High bias and low variance leads to overfitting (model too complex). In this example, we do not the lambda parameter for third order polynomials because the model is too simple to overfit. More complex models with higher order polynomials do require a lambda parameter, of about $e^{-5}$.
In [25]:
def model_selection_by_cross_validation(data=None, plot=True):
"""
QUESTION 1.5
Selects the optimal model using cross validation.
The keyword argument data indicated whether data is given or should be
generated (default=None, means it will be generated)
The keyword argument plot indicates whether the errors for the different m
and k is plotted (default=True).
"""
n = k = 9
if not(data):
x, t = gen_sinusoidal(n)
else:
x, t = data
indices = kfold_indices(n, k)
min_error = np.inf
max_error = -np.inf
if plot:
afig, ax = plt.subplots()
# loop over m and lambda
for lambda_exp in range(-10, 1):
errors = []
lamb = np.e ** lambda_exp
for m in range(9):
# set avg. error to 0 and calculate actual lambda value
error = 0
# loop over the folds
for train, heldout in zip(*indices):
# get the indices of the current fold
xs = [x[i] for i in train]
ts = [t[i] for i in train]
# fit model, on selected points
w = fit_polynomial_reg(xs, ts, m, lamb)
#w = fit_polynomial(xs, ts, m)
# get the value were going to predict on
t_value = t[heldout[0]]
x_value = x[heldout[0]]
# predict: t = w0 * x ** 0 + w1 ** x ** 1 + ...
prediction = [np.sum(w.item(p) * (x_value** p) for p in range(size(w, 1)))][0]
error += .5 * float(prediction - t_value) ** 2 + (lamb/2.) * float(w.dot(w.T))
errors.append(error)
if error < min_error:
min_error = error
best_model = (m, lambda_exp)
if error > max_error:
max_error = error
if plot:
ax.plot(range(9), errors, label="lambda = e^" + str(lambda_exp))
if plot:
legend = ax.legend(loc='upper left')
ax.set_ylim((0, max_error))
ax.set_xlabel("m")
ax.set_ylabel("average absolute error")
ax.set_title("Error for lambda and m")
plt.show()
return best_model
def plot_best_cross_validated_fit():
"""
QUESTION 1.6
"""
n = 9
x, t = gen_sinusoidal(n)
best_m, best_lamb = model_selection_by_cross_validation(data=(x,t), plot=False)
w = fit_polynomial_reg(x, t, 4, 0)
print 'best_m', best_m, 'best lamb', best_lamb
linspace = np.linspace(0, 2*math.pi, 1000)
plot_polynomial(linspace, w, label='best fit')
plot_sine(linspace, label='true sin')
plot(x, t, 'o')
plt.xlabel('x')
plt.ylabel('y')
plt.title('m = %d, lambda = e^%d' % (best_m, best_lamb))
legend()
plt.show()
plot_best_cross_validated_fit()
In [26]:
def gen_sinusoidal2(n):
x = 2*math.pi*(rand(1,n))[0]
t = []
sigma = 0.2
for i in x:
mu = math.sin(i)
s = np.random.normal(mu, sigma)
t.append(s)
return x, array(t)
You're going to implement a Bayesian linear regression model, and fit it to the sinusoidal data. Your regression model has a zero-mean isotropic Gaussian prior over the parameters, governed by a single (scalar) precision parameter $\alpha$, i.e.:
$$p(\bw \;|\; \alpha) = \mathcal{N}(\bw \;|\; 0, \alpha^{-1} \bI)$$The covariance and mean of the posterior are given by:
$$\bS_N= \( \alpha \bI + \beta \bPhi^T \bPhi \)^{-1} $$$$\bm_N = \beta\; \bS_N \bPhi^T \bt$$where $\alpha$ is the precision of the predictive distribution. See MLPR chapter 3.3 for background.
Write a method fit_polynomial_bayes(x, t, M, alpha, beta)
that returns the mean $\bm_N$ and covariance $\bS_N$ of the posterior for a $M$-th order polynomial, given a dataset, where x
, t
and M
have the same meaning as in question 1.2.
In [31]:
def fit_polynomial_bayes(x, t, M, alpha, beta):
Phi = create_phi(x, M)
N = size(Phi, 1)
I = eye(N, N)
Sn = (beta * Phi.T.dot(Phi) + alpha * I).I
mn = beta * Sn.dot(Phi.T).dot(t)
return Sn, mn
The predictive distribution of Bayesian linear regression is:
$$ p(t \;|\; \bx, \bt, \alpha, \beta) = \mathcal{N}(t \;|\; \bm_N^T \phi(\bx), \sigma_N^2(\bx))$$$$ \sigma_N^2 = \frac{1}{\beta} + \phi(\bx)^T \bS_N \phi(\bx) $$where $\phi(\bx)$ are the computed features for a new datapoint $\bx$, and $t$ is the predicted variable for datapoint $\bx$.
Write a function that predict_polynomial_bayes(x, m, S, beta)
that returns the predictive mean and variance given a new datapoint x
, posterior mean m
, posterior variance S
and a choice of model variance beta
.
In [32]:
def predict_polynomial_bayes(x, m, S, beta):
phi = []
for i in range(0,m.size):
phi.append(x**i)
p_mean = np.dot(m,phi)
p_var = beta**(-1) + matrix(phi).dot(S).dot(matrix(phi).T)
return p_mean, p_var
a) (5 points) Generate 7 datapoints with gen_sinusoidal2(7)
. Compute the posterior mean and covariance for a Bayesian polynomial regression model with $M=5$, $\alpha=\frac{1}{2}$ and $\beta=\frac{1}{0.2^2}$.
Plot the Bayesian predictive distribution, where you draw you plot (for $x$ between 0 and $2 \pi$) $t$'s predictive mean and a 1-sigma predictive variance using plt.fill_between(..., alpha=0.1)
(the alpha argument induces transparency).
Include the datapoints in your plot.
b) (5 points) For a second plot, draw 100 samples from the parameters' posterior distribution. Each of these samples is a certain choice of parameters for 5-th order polynomial regression. Display each of these 100 polynomials.
In [33]:
def question_2_4_a():
N = 7
M = 5
alpha = 0.5
beta = 1/0.2**2
res = 1000
X, t = gen_sinusoidal2(N)
Sn, mn = fit_polynomial_bayes(X, t, M, alpha, beta)
ls = linspace(0, 2*math.pi, res)
plot_sine(ls)
plot_polynomial(ls, mn)
plt.plot(X, t, 'o')
upper = []
lower = []
for x in ls:
mean, var = predict_polynomial_bayes(x, mn, Sn, beta)
mean = float(mean)
var = float(var)
upper.append(mean + sqrt(var))
lower.append(mean - sqrt(var))
plt.fill_between(ls, upper, lower, alpha=0.1)
plt.show()
question_2_4_a()
def question_2_4_b():
N = 7
M = 5
alpha = 0.5
beta = 1/0.2**2
res = 1000
X, t = gen_sinusoidal2(N)
Sn, mn = fit_polynomial_bayes(X, t, M, alpha, beta)
ls = linspace(0, 2*math.pi, res)
plot_sine(ls)
plot_polynomial(ls, mn)
plt.plot(X, t, 'o')
mn = [mn.item(i) for i in range(6)]
for i in range(100):
mu = np.random.multivariate_normal(mn, Sn)
mu = matrix(mu)
plot_polynomial(ls, mu, color='r')
plt.show()
question_2_4_b()
a) (5 points) Why is $\beta=\frac{1}{0.2^2}$ the best choice of $\beta$ in section 2.4?
b) (5 points) In the case of Bayesian linear regression, both the posterior of the parameters $p(\bw \;|\; \bt, \alpha, \beta)$ and the predictive distribution $p(t \;|\; \bw, \beta)$ are Gaussian. In consequence (and conveniently), $p(t \;|\; \bt, \alpha, \beta)$ is also Gaussian (See MLPR section 3.3.2 and homework 2 question 4). This is actually one of the (rare) cases where we can make Bayesian predictions without resorting to approximative methods.
Suppose you have to work with some model $p(t\;|\;x,\bw)$ with parameters $\bw$, where the posterior distribution $p(\bw\;|\;\mathcal{D})$ given dataset $\mathcal{D}$ can not be integrated out when making predictions, but where you can still generate samples from the posterior distribution of the parameters. Explain how you can still make approximate Bayesian predictions using samples from the parameters' posterior distribution.
a) As we can see in the definition of the variance parameter of the predictive distribution, the $\beta$ parameter controls the intrinsic noise in the data. The $\phi(\bx)^T \bS_N \phi(\bx)$ part we have control over through the model $\phi(\bx)$, but $\frac{1}{\beta}$ is fixed. Formally, $\beta$ corresponds to the precision of the intrinsic noise. Since in our example we set the noise standard deviation $\sigma$ to 0.2, we should set $\beta$ to $(\sigma^2)^{-1} = \frac{1}{0.2^2}$.
b) A prediction can be made by finding an optimum point estimate of the parameters, by sampling many times from the posterior distribution; this is done by using the MLE or MAP estimate, which need the posterior to be gaussian. The estimate found is then put into the formula for the distribution of a data point. This approach will underestimate the variance of the predictive distribution, because it does not consider doubts in the value of the new input parameter.
In [ ]: