This example shows how the selection from a ipyvolume quiver plot can be controlled with a bqplot scatter plot and it's selection tools. We first get a small dataset from vaex
In [1]:
import numpy as np
import vaex
In [2]:
ds = vaex.example()
N = 2000 # for performance reasons we only do a subset
x, y, z, vx, vy, vz, Lz, E = [ds.columns[k][:N] for k in "x y z vx vy vz Lz E".split()]
In [3]:
import bqplot.pyplot as plt
In [4]:
plt.figure(1, title="E Lz space")
scatter = plt.scatter(Lz, E,
selected_style={'opacity': 0.2, 'size':1, 'stroke': 'red'},
unselected_style={'opacity': 0.2, 'size':1, 'stroke': 'blue'},
default_size=1,
)
plt.brush_selector()
plt.show()
In [8]:
import ipyvolume.pylab as ipv
In [9]:
ipv.clear()
quiver = ipv.quiver(x, y, z, vx, vy, vz, size=2, size_selected=5, color_selected="blue")
ipv.show()
In [10]:
from ipywidgets import jslink, VBox
In [11]:
jslink((scatter, 'selected'), (quiver, 'selected'))
In [12]:
hbox = VBox([p3.current.container, plt.figure(1)])
hbox
In [13]:
import ipyvolume.embed
# if we don't do this, the bqplot will be really tiny in the standalone html
bqplot_layout = hbox.children[1].layout
bqplot_layout.min_width = "400px"
In [14]:
ipyvolume.embed.embed_html("bqplot.html", hbox, offline=True, devmode=True)
In [15]:
!open bqplot.html