In [1]:
import os
import sys
import random
import time
from random import seed, randint
import argparse
import platform
from datetime import datetime
import imp
import numpy as np
import fileinput
from itertools import product
import pandas as pd
from scipy.interpolate import griddata
from scipy.interpolate import interp2d
import seaborn as sns
from os import listdir

import matplotlib.pyplot as plt
import seaborn as sns
from scipy.interpolate import griddata
import matplotlib as mpl
# sys.path.insert(0,'..')
# from notebookFunctions import *
# from .. import notebookFunctions
from Bio.PDB.Polypeptide import one_to_three
from Bio.PDB.Polypeptide import three_to_one
from Bio.PDB.PDBParser import PDBParser
from pyCodeLib import *
from small_script.myFunctions import *
sys.path.insert(0, "/Users/weilu/openmmawsem")
from helperFunctions.myFunctions import *
from collections import defaultdict
%matplotlib inline
# plt.rcParams['figure.figsize'] = (10,6.180)    #golden ratio
# %matplotlib notebook
%load_ext autoreload
%autoreload 2

In [2]:
plt.rcParams['figure.figsize'] = np.array([16.18033, 10])    #golden ratio
plt.rcParams['figure.facecolor'] = 'w'
plt.rcParams['figure.dpi'] = 100
plt.rcParams.update({'font.size': 22})

In [ ]:
os.chdir('/Users/weilu/opt/notebook/Optimization')

In [ ]:
cutoff = 600
pre = "/Users/weilu/Research/server/feb_2020/cath_dataset_shuffle_optimization/three_well_optimization_iter0/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = "iter0"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "shuffle", 1000, mode=0)
dataFile = f"/Users/weilu/Research/data/optimization_2020_{trial_name}_{cutoff}_{trial_name}.csv"
data.to_csv(dataFile)
print(dataFile)

In [8]:
cutoff = 600
pre = "/Users/weilu/Research/server/feb_2020/cath_dataset_shuffle_optimization/optimization_iter0/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = "iter0"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "shuffle", 1000, mode=0)
dataFile = f"/Users/weilu/Research/data/optimization_2020_cath_{trial_name}_{cutoff}_{trial_name}.csv"
data.to_csv(dataFile)
print(dataFile)


/Users/weilu/Research/server/feb_2020/cath_dataset_shuffle_optimization/optimization_iter0//saved_gammas/iter0_cutoff600_impose_Aprime_constraint
0 6.7438470062754
/Users/weilu/Research/data/optimization_2020_cath_iter0_600_iter0.csv

In [29]:
data_standard = pd.read_csv("/Users/weilu/Research/data/optimization_2020_cath_iter0_600_iter0.csv", index_col=0)
data_three_well = pd.read_csv('/Users/weilu/Research/data/optimization_2020_iter0_600_iter0.csv', index_col=0)

data_standard = data_standard.sort_values("Z_scores").reset_index(drop=True).reset_index()
data_three_well = data_three_well.sort_values("Z_scores").reset_index(drop=True).reset_index()

In [32]:
data = pd.concat([data_standard.assign(Hamiltonian="standard"), data_three_well.assign(Hamiltonian="three_well")])

In [35]:
sns.lineplot("index", "Z_scores", hue="Hamiltonian", data=data)


Out[35]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1a26cda0>

iteration 2


In [91]:
cutoff = 400
i = 2
pre = f"/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter{i}/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = f"iter{i}"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = "/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter1/iter_1_30"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list_complete", gamma_file_name, "openMM", 50, mode=0)
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("optimization_gamma_cutoff400")


/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter2//saved_gammas/iter2_cutoff400_impose_Aprime_constraint
0 4.4233380351140195
Out[91]:
Text(0.5, 1.0, 'optimization_gamma_cutoff400')

In [90]:
cutoff = 300
i = 2
pre = f"/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter{i}/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = f"iter{i}"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = "/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter1/iter_1_30"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list_complete", gamma_file_name, "openMM", 50, mode=0)
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("optimization_gamma_cutoff300")


/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter2//saved_gammas/iter2_cutoff300_impose_Aprime_constraint
0 4.049148081711622
Out[90]:
Text(0.5, 1.0, 'optimization_gamma_cutoff300')

In [88]:
cutoff = 300
i = 2
pre = f"/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter{i}/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = f"iter{i}"
# gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
gamma_file_name = "/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter1/iter_1_30"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list_complete", gamma_file_name, "openMM", 50, mode=0)
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("optimization_gamma_cutoff300")


/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter1/iter_1_30
0 0.8007013665370382
Out[88]:
Text(0.5, 1.0, 'optimization_gamma_cutoff300')

In [89]:
cutoff = 300
i = 2
pre = f"/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter{i}/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = f"iter{i}"
# gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
gamma_file_name = "/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter1/iter_1_30"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 50, mode=0)
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("optimization_gamma_cutoff300")


/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter1/iter_1_30
0 -3.4703192659227886
Out[89]:
Text(0.5, 1.0, 'optimization_gamma_cutoff300')

iteration 1


In [75]:
cutoff = 100
i = 1
pre = f"/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter{i}/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = f"iter{i}"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list_complete", gamma_file_name, "openMM", 50, mode=0)
dataFile = f"/Users/weilu/Research/data/optimization_2020_mass_specific_deocys_{trial_name}_{cutoff}_{trial_name}.csv"
data.to_csv(dataFile)
print(dataFile)


/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter1//saved_gammas/iter1_cutoff100_impose_Aprime_constraint
0 3.3679547936516134
/Users/weilu/Research/data/optimization_2020_mass_specific_deocys_iter1_100_iter1.csv

In [76]:
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("optimization_gamma_cutoff100")


Out[76]:
Text(0.5, 1.0, 'optimization_gamma_cutoff100')

In [84]:
cutoff = 300
i = 1
pre = f"/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter{i}/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = f"iter{i}"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list_complete", gamma_file_name, "openMM", 50, mode=0)
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("optimization_gamma_cutoff300")


/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter1//saved_gammas/iter1_cutoff300_impose_Aprime_constraint
0 3.940622839693749
Out[84]:
Text(0.5, 1.0, 'optimization_gamma_cutoff300')

In [77]:
cutoff = 100
i = 1
pre = f"/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter{i}/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = f"iter{i}"
# gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list_complete", gamma_file_name, "openMM", 50, mode=0)
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("original_gamma")


/Users/weilu/opt/parameters/original_gamma
0 -3.412514346007094
Out[77]:
Text(0.5, 1.0, 'original_gamma')

In [79]:
cutoff = 100
i = 1
pre = f"/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter{i}/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = f"iter{i}"
# gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_file_name = "/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter0/iter_0_30"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list_complete", gamma_file_name, "openMM", 50, mode=0)
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("iter_0_30")


/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter0/iter_0_30
0 1.2852675230856065
Out[79]:
Text(0.5, 1.0, 'iter_0_30')

In [81]:
cutoff = 100
i = 1
pre = f"/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter{i}/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = f"iter{i}"
# gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_file_name = "/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter1/iter_1_30"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list_complete", gamma_file_name, "openMM", 50, mode=0)
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("iter_1_30")


/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter1/iter_1_30
0 0.8007013665370382
Out[81]:
Text(0.5, 1.0, 'iter_1_30')

In [ ]:


In [73]:
cutoff = 100
pre = "/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter0/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = "iter0"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 50, mode=0)
dataFile = f"/Users/weilu/Research/data/optimization_2020_mass_specific_deocys_{trial_name}_{cutoff}_{trial_name}.csv"
data.to_csv(dataFile)
print(dataFile)


/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter0//saved_gammas/iter0_cutoff100_impose_Aprime_constraint
0 3.2673298994171183
/Users/weilu/Research/data/optimization_2020_mass_specific_deocys_iter0_100_iter0.csv

In [74]:
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("optimization_gamma_cutoff100")


Out[74]:
Text(0.5, 1.0, 'optimization_gamma_cutoff100')

In [67]:
plt.rcParams['figure.figsize'] = 0.5*np.array([16.18033, 10])    #golden ratio

In [69]:
cutoff = 100
pre = "/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter0/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = "iter0"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = "/Users/weilu/Research/server/feb_2020/cath_dataset_shuffle_optimization/optimization_iter0//saved_gammas/iter0_cutoff600_impose_Aprime_constraint"
gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
# gamma_file_name = f"{pre}/iter_0_30"

# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 50, mode=0)


/Users/weilu/opt/parameters/original_gamma
0 -3.412514346007094

In [70]:
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("original_gamma")


Out[70]:
Text(0.5, 1.0, 'original_gamma')

In [62]:
cutoff = 100
pre = "/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter0/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = f"{pre}/saved_gammas"
trial_name = "iter0"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
gamma_file_name = "/Users/weilu/Research/server/feb_2020/cath_dataset_shuffle_optimization/optimization_iter0//saved_gammas/iter0_cutoff600_impose_Aprime_constraint"
gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_file_name = f"{pre}/iter_0_30"

# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 50, mode=0)
dataFile = f"/Users/weilu/Research/data/optimization_2020_mass_specific_deocys_{trial_name}_{cutoff}_{trial_name}.csv"
# data.to_csv(dataFile)
print(dataFile)


/Users/weilu/Research/server/feb_2020/mass_specific_decoys/optimization_iter0//iter_0_30
0 1.2852675230856065
/Users/weilu/Research/data/optimization_2020_mass_specific_deocys_iter0_100_iter0.csv

In [68]:
data = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data)
plt.title("mixed_iter_0_30")


Out[68]:
Text(0.5, 1.0, 'mixed_iter_0_30')

In [60]:
data_specific_decoys = data.sort_values("Z_scores").reset_index(drop=True).reset_index()
sns.lineplot("index", "Z_scores", data=data_specific_decoys)


Out[60]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a218f7eb8>

In [39]:
data


Out[39]:
Protein Z_scores E_native E_mgs Std_mg
0 1BAJ_iteration_0 9.428375 -226.207012 -5.135984 23.447416
1 1HOE_iteration_0 7.503839 -485.461830 -14.333970 62.784911
2 1HYP_iteration_0 21.203656 -235.320396 -1.618702 11.021764
3 1TIF_iteration_0 12.613545 -423.481708 -7.426257 32.984815
4 1VCC_iteration_0 10.839966 -358.586200 -7.229608 32.413072
5 1BY9_iteration_0 5.988900 -460.567829 -16.927459 74.077101
6 1BDO_iteration_0 15.584822 -488.070524 -6.919367 30.873061
7 451C_iteration_0 9.717537 -415.431560 -9.463045 41.776893
8 1CC5_iteration_0 6.247814 -288.145751 -10.114010 44.500642
9 1BB9_iteration_0 14.040275 -524.814318 -8.241070 36.792247
10 1PHT_iteration_0 7.195592 -623.490061 -19.152688 83.987170
11 1OPD_iteration_0 13.607582 -423.165287 -6.718728 30.604009
12 1A32_iteration_0 5.840111 -455.867218 -17.186638 75.115109
13 1PTF_iteration_0 59.715000 -438.151957 -0.065793 7.336283
14 1GVP_iteration_0 18.566639 -408.843702 -4.826254 21.760397
15 1CYO_iteration_0 6.138447 -515.195604 -18.489686 80.917192
16 1TIG_iteration_0 8.158010 -501.591754 -13.620341 59.815008
17 1CTJ_iteration_0 7.715984 -281.160190 -7.897364 35.415164
18 1FNA_iteration_0 8.547929 -631.925570 -16.436551 72.004460
19 1RZL_iteration_0 10.427306 -412.385678 -8.669888 38.717170
20 1WHO_iteration_0 12.051732 -624.313655 -11.544458 50.844907
21 2CBP_iteration_0 59.009891 -496.396167 -0.892006 8.396968
22 2ACY_iteration_0 10.410203 -582.821711 -12.457872 54.788927
23 1PLC_iteration_0 28.829222 -569.449731 -4.228783 19.605834
24 1BM8_iteration_0 7.757476 -453.811722 -12.849924 56.843463
25 1OPC_iteration_0 11.375011 -462.553536 -8.928856 39.879055
26 1PUC_iteration_0 9.330784 -464.061864 -11.039601 48.551363
27 3VUB_iteration_0 8.848219 -553.445327 -13.842289 60.984370
28 1TUL_iteration_0 15.998182 -460.355053 -6.382102 28.376534
29 1FMB_iteration_0 7.223540 -502.707642 -15.373405 67.464735
... ... ... ... ... ...
69 1CPQ_iteration_0 8.663515 -506.227309 -12.940421 56.938425
70 1PDO_iteration_0 9.225366 -637.904138 -15.341419 67.483794
71 3LZT_iteration_0 7.584117 -437.776855 -12.704130 56.047756
72 1MSC_iteration_0 15.256677 -725.753183 -10.594112 46.875153
73 1HMT_iteration_0 8.395163 -900.293348 -23.875699 104.395549
74 1HTP_iteration_0 7.477548 -861.266329 -25.537117 111.765143
75 1C52_iteration_0 52.240422 -429.110092 -0.375577 8.206950
76 1KUH_iteration_0 10.352078 -711.596716 -15.316891 67.259911
77 1CRB_iteration_0 11.139739 -806.284335 -16.125377 70.931553
78 1POC_iteration_0 8.784209 -840.666622 -21.231059 93.285076
79 1AQT_iteration_0 37.155960 -570.277410 2.873984 15.425557
80 2END_iteration_0 10.183630 -808.764169 -17.628827 77.686970
81 5NUL_iteration_0 50.639574 -590.185825 -0.789005 11.639056
82 1PNE_iteration_0 45.810964 -598.279388 -1.884867 13.018598
83 1LCL_iteration_0 38.409601 -592.461047 -2.896825 15.349397
84 2SNS_iteration_0 32.165964 -649.955338 -4.218386 20.075163
85 1FLP_iteration_0 11.649095 -482.077364 -9.104773 40.601658
86 1TFE_iteration_0 9.201887 -578.637989 -13.837701 61.378743
87 1AX8_iteration_0 29.342250 -532.506577 -3.367085 18.033365
88 1PKP_iteration_0 13.383449 -865.418420 -14.459368 63.582940
89 1RSS_iteration_0 8.264592 -588.676272 -15.776861 69.319744
90 1JON_iteration_0 13.373668 -783.884824 -12.982296 57.643315
91 1VLS_iteration_0 10.019059 -354.019766 -7.651386 34.570950
92 1LBA_iteration_0 32.671301 -807.759754 -5.254645 24.562998
93 1ALY_iteration_0 60.691161 -706.181763 -1.690688 11.607804
94 1MBA_iteration_0 28.633488 -530.844729 -3.435115 18.419328
95 2HBG_iteration_0 14.102945 -344.475492 -5.050209 24.067689
96 1AKR_iteration_0 13.377592 -666.764887 -11.089491 49.012963
97 1OSA_iteration_0 9.472212 -735.768297 -17.250237 75.855358
98 1DIV_iteration_0 8.499564 -612.549785 -16.010655 70.184672

99 rows × 5 columns


In [11]:
# dataFile = f"/Users/weilu/Research/data/optimization_2020_{trial_name}_{cutoff}_{trial_name}.csv"
dataFiel = '/Users/weilu/Research/data/optimization_2020_iter0_600_iter0.csv'

In [146]:
pwd


Out[146]:
'/Users/weilu/opt/notebook/Optimization'

In [147]:
pre = "/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization/"
trial_name = "iter2"
save_gamma_pre = "saved_gammas"

In [165]:


In [187]:
d_ = []
for i in range(2, 5):
    d = pd.read_csv(f"/Users/weilu/Research/data/optimization_iter{i}.csv", index_col=0)
    d_.append(d.assign(iteration=f"iter_{i}"))

In [188]:
d = pd.read_csv(f"/Users/weilu/Research/data/optimization_iter4_600.csv", index_col=0)
d_.append(d.assign(iteration=f"iter_{i}_600"))

In [189]:
d = pd.read_csv(f"/Users/weilu/Research/data/optimization_iter4_500_iter4.csv", index_col=0)
d_.append(d.assign(iteration=f"iter_{i}_500_iter4"))

In [190]:
data = pd.concat(d_)

In [191]:
sns.lineplot("Protein", "Z_scores", data=data, hue="iteration")


Out[191]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a35671a58>

In [183]:
cutoff = 500
pre = "/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter4/"
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = "/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter4/saved_gammas"
trial_name = "iter4"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 500, mode=0)
data.to_csv(f"/Users/weilu/Research/data/optimization_{trial_name}_{cutoff}_{trial_name}.csv")
data


/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter4/saved_gammas/iter4_cutoff500_impose_Aprime_constraint
0 3.3121770041794005
Out[183]:
Protein Z_scores E_native E_mgs Std_mg
0 1e0m_first_iter1_cpu4 3.312177 -36.816216 -28.915708 2.385291
1 1w4e_first_iter1_cpu4 2.257365 -60.644646 -52.772211 3.487444
2 1e0g_first_iter1_cpu4 2.107503 -57.673978 -49.647229 3.808654
3 2wqg_first_iter1_cpu4 1.808784 -67.708276 -62.111743 3.094086
4 1jo8_first_iter1_cpu4 4.665952 -85.425310 -63.991036 4.593762
5 1fex_first_iter1_cpu4 2.338628 -71.588414 -62.999750 3.672523
6 2l6r_first_iter1_cpu4 2.513647 -82.390677 -74.136316 3.283819
7 1c8c_first_iter1_cpu4 3.299335 -92.524901 -78.462282 4.262258
8 1g6p_first_iter1_cpu4 5.063909 -97.388058 -76.213946 4.181377
9 1mjc_first_iter1_cpu4 4.655057 -92.608008 -71.733297 4.484309
10 2jmc_first_iter1_cpu4 3.964838 -102.997144 -78.054939 6.290850
11 1hdn_first_iter1_cpu4 4.981697 -138.438568 -111.297143 5.448229
12 1st7_first_iter1_cpu4 2.910751 -123.749598 -109.468219 4.906424
13 1n88_first_iter1_cpu4 4.261773 -150.986730 -123.917604 6.351611
14 1d6o_first_iter1_cpu4 6.369843 -156.290539 -106.976518 7.741795
15 1hcd_first_iter1_cpu4 6.946872 -134.032154 -77.577937 8.126567
16 2ga5_first_iter1_cpu4 3.004566 -157.581894 -135.300234 7.415932
17 1j5u_first_iter1_cpu4 5.804230 -189.481440 -144.430349 7.761769
18 3o4d_first_iter1_cpu4 6.478313 -171.393212 -110.804341 9.352570
19 1k0s_first_iter1_cpu4 5.597662 -231.830315 -184.973835 8.370724
20 1e0m_iter2_gpu 0.150713 -36.816216 -36.372021 2.947284
21 1w4e_iter2_gpu 4.728280 -60.644646 -47.140262 2.856088
22 1e0g_iter2_gpu 3.958457 -57.673978 -46.297364 2.874002
23 2wqg_iter2_gpu 3.981741 -67.708276 -56.721588 2.759267
24 1jo8_iter2_gpu 4.432576 -85.425310 -66.127854 4.353553
25 1fex_iter2_gpu 1.959850 -71.588414 -64.329942 3.703586
26 2l6r_iter2_gpu 2.140311 -82.390677 -72.067506 4.823212
27 1c8c_iter2_gpu 5.839070 -92.524901 -75.184236 2.969765
28 1g6p_iter2_gpu 4.712841 -97.388058 -79.501599 3.795261
29 1mjc_iter2_gpu 3.526493 -92.608008 -76.534705 4.557871
... ... ... ... ... ...
70 2jmc_iter2_real_gpu 3.179999 -102.997144 -91.518706 3.609573
71 1hdn_iter2_real_gpu 3.160220 -138.438568 -122.788498 4.952209
72 1st7_iter2_real_gpu 3.184640 -123.749598 -113.880443 3.098986
73 1n88_iter2_real_gpu 3.546830 -150.986730 -131.270706 5.558773
74 1d6o_iter2_real_gpu 6.913899 -156.290539 -127.011226 4.234849
75 1hcd_iter2_real_gpu 6.803206 -134.032154 -106.721932 4.014317
76 2ga5_iter2_real_gpu 2.110932 -157.581894 -147.966879 4.554867
77 1j5u_iter2_real_gpu 5.709918 -189.481440 -164.060275 4.452107
78 3o4d_iter2_real_gpu 10.220263 -171.393212 -132.835252 3.772698
79 1k0s_iter2_real_gpu 7.246257 -231.830315 -193.173057 5.334790
80 1e0m_iter3_gpu 0.378746 -36.816216 -36.077500 1.950425
81 1w4e_iter3_gpu 2.679755 -60.644646 -54.516723 2.286748
82 1e0g_iter3_gpu 0.549481 -57.673978 -56.541436 2.061112
83 2wqg_iter3_gpu 0.536303 -67.708276 -66.772688 1.744516
84 1jo8_iter3_gpu 3.659517 -85.425310 -72.676312 3.483792
85 1fex_iter3_gpu 0.756516 -71.588414 -69.735254 2.449598
86 2l6r_iter3_gpu 1.173988 -82.390677 -79.532240 2.434809
87 1c8c_iter3_gpu 2.876593 -92.524901 -85.270845 2.521753
88 1g6p_iter3_gpu 3.383955 -97.388058 -86.008975 3.362657
89 1mjc_iter3_gpu 2.430544 -92.608008 -83.136182 3.896999
90 2jmc_iter3_gpu 2.158026 -102.997144 -94.089439 4.127709
91 1hdn_iter3_gpu 5.250408 -138.438568 -120.791854 3.361017
92 1st7_iter3_gpu 2.941568 -123.749598 -114.054928 3.295749
93 1n88_iter3_gpu 3.462690 -150.986730 -133.679181 4.998296
94 1d6o_iter3_gpu 5.881688 -156.290539 -128.536625 4.718699
95 1hcd_iter3_gpu 5.727297 -134.032154 -107.576074 4.619296
96 2ga5_iter3_gpu 0.363977 -157.581894 -155.734867 5.074576
97 1j5u_iter3_gpu 4.527437 -189.481440 -163.919449 5.646017
98 3o4d_iter3_gpu 6.556526 -171.393212 -140.371267 4.731461
99 1k0s_iter3_gpu 5.325206 -231.830315 -202.846360 5.442786

100 rows × 5 columns


In [177]:
cutoff = 600
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = "/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter4/saved_gammas"
trial_name = "iter4"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 500, mode=0)
data.to_csv(f"/Users/weilu/Research/data/optimization_{trial_name}_{cutoff}.csv")
data


/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter4/saved_gammas/iter4_cutoff600_impose_Aprime_constraint
0 2.437450526865485
Out[177]:
Protein Z_scores E_native E_mgs Std_mg
0 1e0m_first 2.437451 -29.687916 -23.082489 2.709974
1 1w4e_first 2.167875 -62.893537 -55.301214 3.502197
2 1e0g_first 0.982447 -57.390529 -54.723331 2.714851
3 2wqg_first 1.212596 -71.658121 -68.511468 2.594972
4 1jo8_first 2.173974 -88.129116 -78.052529 4.635099
5 1fex_first 1.940001 -73.105994 -66.649105 3.328291
6 2l6r_first 2.297150 -86.484814 -80.112769 2.773892
7 1c8c_first 3.751779 -92.796363 -78.861784 3.714125
8 1g6p_first 4.169307 -98.044510 -76.676257 5.125133
9 1mjc_first 2.706049 -92.944015 -77.718475 5.626482
10 2jmc_first 2.635777 -102.012001 -87.176013 5.628696
11 1hdn_first 3.945696 -152.589027 -127.308871 6.407020
12 1st7_first 3.667776 -130.931582 -117.771464 3.588038
13 1n88_first 2.832922 -156.063073 -133.006484 8.138801
14 1d6o_first 6.082118 -166.903525 -119.470225 7.798814
15 1hcd_first 5.865000 -106.574576 -56.696772 8.504315
16 2ga5_first 2.655186 -172.770734 -157.420803 5.781113
17 1j5u_first 3.415834 -193.072141 -157.918138 10.291485
18 3o4d_first 6.428588 -165.852830 -120.707847 7.022535
19 1k0s_first 3.801195 -258.767711 -216.434418 11.136838
20 1e0m_first_cpu2 3.455960 -29.687916 -19.318690 3.000389
21 1w4e_first_cpu2 2.818693 -62.893537 -53.197366 3.439953
22 1e0g_first_cpu2 1.890936 -57.390529 -49.859690 3.982598
23 2wqg_first_cpu2 1.644639 -71.658121 -67.427807 2.572184
24 1jo8_first_cpu2 4.590015 -88.129116 -67.002715 4.602687
25 1fex_first_cpu2 2.492417 -73.105994 -64.894163 3.294726
26 2l6r_first_cpu2 2.321634 -86.484814 -79.168617 3.151314
27 1c8c_first_cpu2 4.231876 -92.796363 -76.470545 3.857821
28 1g6p_first_cpu2 5.479225 -98.044510 -72.192205 4.718241
29 1mjc_first_cpu2 4.160242 -92.944015 -71.342332 5.192410
30 2jmc_first_cpu2 3.359419 -102.012001 -85.100235 5.034134
31 1hdn_first_cpu2 5.100203 -152.589027 -121.787625 6.039250
32 1st7_first_cpu2 3.859899 -130.931582 -115.293128 4.051519
33 1n88_first_cpu2 4.130789 -156.063073 -127.712907 6.863136
34 1d6o_first_cpu2 6.822750 -166.903525 -111.230865 8.159857
35 1hcd_first_cpu2 6.384997 -106.574576 -53.562522 8.302597
36 2ga5_first_cpu2 3.357210 -172.770734 -151.804751 6.245061
37 1j5u_first_cpu2 5.849853 -193.072141 -146.527994 7.956464
38 3o4d_first_cpu2 6.948952 -165.852830 -117.076121 7.019290
39 1k0s_first_cpu2 4.318783 -258.767711 -215.299644 10.064887

In [164]:
cutoff = 400
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = "/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter4/saved_gammas"
trial_name = "iter4"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 500, mode=0)
data.to_csv("/Users/weilu/Research/data/optimization_iter4.csv")
data


/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter4/saved_gammas/iter4_cutoff400_impose_Aprime_constraint
0 0.7876760758649356
Out[164]:
Protein Z_scores E_native E_mgs Std_mg
0 1e0m_first 0.787676 -37.067622 -35.457962 2.043556
1 1w4e_first 1.515004 -58.405149 -54.094333 2.845416
2 1e0g_first 0.797711 -57.081134 -55.123512 2.454050
3 2wqg_first 0.740115 -65.699767 -63.951993 2.361490
4 1jo8_first 2.102817 -82.577565 -73.934768 4.110105
5 1fex_first 1.517787 -70.235907 -66.513311 2.452647
6 2l6r_first 2.013688 -79.485672 -74.797000 2.328400
7 1c8c_first 3.002166 -93.128980 -83.434969 3.229005
8 1g6p_first 3.862506 -97.395896 -80.438017 4.390382
9 1mjc_first 2.608514 -93.183422 -79.851485 5.110931
10 2jmc_first 2.333566 -100.477659 -89.513953 4.698262
11 1hdn_first 3.257870 -132.927494 -112.512969 6.266218
12 1st7_first 3.022628 -119.991108 -109.708884 3.401750
13 1n88_first 2.928950 -149.845004 -127.371891 7.672755
14 1d6o_first 4.803725 -149.821766 -121.158058 5.966975
15 1hcd_first 6.036113 -142.869818 -101.756856 6.811165
16 2ga5_first 1.168159 -149.108728 -143.303447 4.969600
17 1j5u_first 3.154135 -188.082079 -155.727554 10.257812
18 3o4d_first 6.660938 -169.672287 -127.091117 6.392668
19 1k0s_first 3.490888 -224.353763 -185.623983 11.094534
20 1e0m_first_cpu2 2.059355 -37.067622 -32.003177 2.459238
21 1w4e_first_cpu2 2.052874 -58.405149 -52.753547 2.753020
22 1e0g_first_cpu2 1.740947 -57.081134 -51.282303 3.330849
23 2wqg_first_cpu2 1.138468 -65.699767 -63.057632 2.320781
24 1jo8_first_cpu2 4.626668 -82.577565 -63.276059 4.171795
25 1fex_first_cpu2 2.218921 -70.235907 -64.510716 2.580169
26 2l6r_first_cpu2 2.172130 -79.485672 -73.938207 2.553928
27 1c8c_first_cpu2 3.564051 -93.128980 -80.845054 3.446619
28 1g6p_first_cpu2 5.173129 -97.395896 -76.701489 4.000365
29 1mjc_first_cpu2 4.511595 -93.183422 -74.718512 4.092768
30 2jmc_first_cpu2 3.021718 -100.477659 -87.581529 4.267814
31 1hdn_first_cpu2 4.344019 -132.927494 -107.671296 5.814016
32 1st7_first_cpu2 3.083184 -119.991108 -107.954433 3.903976
33 1n88_first_cpu2 4.318504 -149.845004 -122.841976 6.252866
34 1d6o_first_cpu2 5.114719 -149.821766 -114.448779 6.915920
35 1hcd_first_cpu2 6.508894 -142.869818 -99.801178 6.616890
36 2ga5_first_cpu2 1.720217 -149.108728 -139.690726 5.474892
37 1j5u_first_cpu2 5.970918 -188.082079 -145.228631 7.177029
38 3o4d_first_cpu2 7.333306 -169.672287 -123.490628 6.297522
39 1k0s_first_cpu2 3.982413 -224.353763 -185.803428 9.680146

In [168]:
cutoff = 400
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
gamma_pre = "/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter3/saved_gammas"
trial_name = "iter3"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 500, mode=0)
data.to_csv("/Users/weilu/Research/data/optimization_iter3.csv")
data


/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter3/saved_gammas/iter3_cutoff400_impose_Aprime_constraint
0 0.6344609848433337
Out[168]:
Protein Z_scores E_native E_mgs Std_mg
0 1e0m_first 0.634461 -38.556688 -37.246065 2.065726
1 1w4e_first 1.201209 -61.074830 -57.702269 2.807639
2 1e0g_first 0.445048 -60.819728 -59.653053 2.621460
3 2wqg_first 0.507040 -69.467553 -68.228348 2.443997
4 1jo8_first 1.787785 -87.080095 -78.898117 4.576602
5 1fex_first 1.115041 -74.215760 -71.304414 2.610977
6 2l6r_first 1.941371 -84.914961 -80.127891 2.465819
7 1c8c_first 2.466411 -95.668378 -87.245475 3.415045
8 1g6p_first 3.329052 -98.923750 -84.416532 4.357763
9 1mjc_first 1.869539 -95.149166 -85.153383 5.346657
10 2jmc_first 1.744542 -103.489416 -94.963809 4.887018
11 1hdn_first 2.856696 -137.651330 -119.216216 6.453299
12 1st7_first 2.521301 -125.103219 -115.714651 3.723700
13 1n88_first 2.722704 -155.208686 -133.873589 7.835997
14 1d6o_first 4.171244 -155.831336 -129.522250 6.307251
15 1hcd_first 5.202105 -149.299764 -110.153407 7.525100
16 2ga5_first 0.571533 -157.713854 -154.536813 5.558808
17 1j5u_first 2.875582 -196.870655 -164.769228 11.163454
18 3o4d_first 4.074454 -167.322716 -139.476878 6.834251
19 1k0s_first 3.334836 -236.446434 -197.230864 11.759371
20 1e0m_first_cpu2 1.849402 -38.556688 -33.809990 2.566613
21 1w4e_first_cpu2 1.590460 -61.074830 -56.558249 2.839796
22 1e0g_first_cpu2 1.411326 -60.819728 -55.827980 3.536920
23 2wqg_first_cpu2 0.820961 -69.467553 -67.445767 2.462706
24 1jo8_first_cpu2 4.425489 -87.080095 -67.590119 4.404028
25 1fex_first_cpu2 1.930070 -74.215760 -68.931463 2.737878
26 2l6r_first_cpu2 2.117750 -84.914961 -79.203507 2.696944
27 1c8c_first_cpu2 3.047331 -95.668378 -84.736636 3.587317
28 1g6p_first_cpu2 4.167945 -98.923750 -81.044513 4.289701
29 1mjc_first_cpu2 3.494257 -95.149166 -79.944622 4.351295
30 2jmc_first_cpu2 2.356551 -103.489416 -93.047538 4.430999
31 1hdn_first_cpu2 3.767893 -137.651330 -114.527449 6.137085
32 1st7_first_cpu2 2.662509 -125.103219 -113.889853 4.211579
33 1n88_first_cpu2 3.976734 -155.208686 -129.339874 6.505039
34 1d6o_first_cpu2 4.614813 -155.831336 -122.333535 7.258755
35 1hcd_first_cpu2 5.699176 -149.299764 -107.545858 7.326306
36 2ga5_first_cpu2 1.283721 -157.713854 -150.007116 6.003438
37 1j5u_first_cpu2 5.599969 -196.870655 -153.333767 7.774487
38 3o4d_first_cpu2 4.686981 -167.322716 -135.754866 6.735221
39 1k0s_first_cpu2 3.865459 -236.446434 -196.747230 10.270243

In [169]:
cutoff = 400
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
trial_name = "iter2"
gamma_pre = "/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter2/saved_gammas"
gamma_file_name = f"{gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 500, mode=0)
data.to_csv("/Users/weilu/Research/data/optimization_iter2.csv")
data


/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter2/saved_gammas/iter2_cutoff400_impose_Aprime_constraint
0 0.4698742711424042
Out[169]:
Protein Z_scores E_native E_mgs Std_mg
0 1e0m_first 0.469874 -43.213498 -42.006613 2.568527
1 1w4e_first 0.723114 -67.017416 -64.795847 3.072224
2 1e0g_first -0.654004 -64.868440 -66.633653 2.699087
3 2wqg_first -0.077250 -75.599967 -75.811276 2.735392
4 1jo8_first 1.261066 -95.781957 -89.477482 4.999322
5 1fex_first 0.594247 -82.751314 -80.904610 3.107636
6 2l6r_first 1.632334 -97.116654 -92.372256 2.906511
7 1c8c_first 1.247656 -101.859689 -96.915725 3.962601
8 1g6p_first 2.236991 -104.383469 -93.667717 4.790253
9 1mjc_first 1.256513 -103.493135 -95.922269 6.025299
10 2jmc_first 0.657670 -107.845251 -104.331581 5.342602
11 1hdn_first 2.581162 -154.236230 -135.144795 7.396450
12 1st7_first 1.766442 -135.010621 -127.922253 4.012794
13 1n88_first 2.178876 -166.786014 -148.343840 8.464076
14 1d6o_first 2.799179 -168.717352 -147.640110 7.529794
15 1hcd_first 6.400319 -183.343584 -131.044318 8.171354
16 2ga5_first -0.374858 -169.329486 -171.490242 5.764194
17 1j5u_first 2.273941 -215.170763 -187.835083 12.021281
18 3o4d_first 0.203611 -168.228465 -166.820099 6.916932
19 1k0s_first 2.993938 -257.169090 -223.627634 11.203122
20 1e0m_first_cpu2 1.388753 -43.213498 -38.819753 3.163806
21 1w4e_first_cpu2 0.869386 -67.017416 -64.288405 3.139007
22 1e0g_first_cpu2 0.403343 -64.868440 -63.277411 3.944601
23 2wqg_first_cpu2 0.116510 -75.599967 -75.278912 2.755604
24 1jo8_first_cpu2 3.844796 -95.781957 -77.888042 4.654061
25 1fex_first_cpu2 1.414598 -82.751314 -78.159231 3.246211
26 2l6r_first_cpu2 1.842919 -97.116654 -91.312664 3.149346
27 1c8c_first_cpu2 1.483160 -101.859689 -95.826154 4.068026
28 1g6p_first_cpu2 2.738032 -104.383469 -91.145495 4.834851
29 1mjc_first_cpu2 2.685769 -103.493135 -90.701758 4.762649
30 2jmc_first_cpu2 0.914868 -107.845251 -103.374078 4.887235
31 1hdn_first_cpu2 3.475454 -154.236230 -130.431415 6.849412
32 1st7_first_cpu2 1.985182 -135.010621 -126.129152 4.473881
33 1n88_first_cpu2 3.166187 -166.786014 -143.641699 7.309837
34 1d6o_first_cpu2 3.655026 -168.717352 -140.352983 7.760375
35 1hcd_first_cpu2 6.605183 -183.343584 -128.104321 8.363018
36 2ga5_first_cpu2 0.167652 -169.329486 -168.254863 6.409856
37 1j5u_first_cpu2 4.696092 -215.170763 -174.891496 8.577188
38 3o4d_first_cpu2 0.645083 -168.228465 -163.860227 6.771590
39 1k0s_first_cpu2 3.544272 -257.169090 -222.834510 9.687344

In [152]:
cutoff = 100
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
# gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 500, mode=0)
data


/Users/weilu/opt/parameters/original_gamma
0 -3.134315368175681
Out[152]:
Protein Z_scores E_native E_mgs Std_mg
0 1e0m_first -3.134315 -28.959620 -36.110636 2.281524
1 1w4e_first -2.142032 -54.829456 -62.269248 3.473241
2 1e0g_first -1.928739 -62.949887 -70.279293 3.800103
3 2wqg_first -1.334083 -53.118996 -57.767673 3.484550
4 1jo8_first -2.590605 -70.198432 -82.146847 4.612211
5 1fex_first -0.233674 -65.982315 -67.215202 5.276098
6 2l6r_first -1.284522 -69.544472 -75.615431 4.726239
7 1c8c_first -2.335525 -83.483651 -97.340607 5.933123
8 1g6p_first -2.024260 -87.507191 -101.837941 7.079500
9 1mjc_first -1.716419 -89.817306 -101.801126 6.981874
10 2jmc_first -3.434157 -91.124491 -110.284154 5.579146
11 1hdn_first -2.243509 -107.301542 -127.142933 8.843911
12 1st7_first 0.208169 -94.678465 -93.002784 8.049600
13 1n88_first -1.737652 -135.207312 -155.845878 11.877270
14 1d6o_first -0.162572 -151.575120 -153.472416 11.670460
15 1hcd_first -1.806558 -147.139945 -180.327554 18.370635
16 2ga5_first -1.940473 -143.747846 -168.094733 12.546883
17 1j5u_first -0.404661 -161.967877 -170.485652 21.049170
18 3o4d_first -1.753641 -137.545352 -184.834330 26.966166
19 1k0s_first 0.112339 -248.581594 -241.964886 58.899427
20 1e0m_first_cpu2 -3.320444 -28.959620 -37.107929 2.453982
21 1w4e_first_cpu2 -1.800365 -54.829456 -63.172730 4.634212
22 1e0g_first_cpu2 -1.773759 -62.949887 -70.298260 4.142826
23 2wqg_first_cpu2 -0.520792 -53.118996 -55.375029 4.331927
24 1jo8_first_cpu2 -0.747896 -70.198432 -74.725268 6.052764
25 1fex_first_cpu2 0.608309 -65.982315 -61.373171 7.576973
26 2l6r_first_cpu2 -1.378248 -69.544472 -77.492411 5.766699
27 1c8c_first_cpu2 -0.572622 -83.483651 -89.156922 9.907531
28 1g6p_first_cpu2 -1.645771 -87.507191 -98.970893 6.965551
29 1mjc_first_cpu2 -1.113378 -89.817306 -96.115385 5.656731
30 2jmc_first_cpu2 -2.303040 -91.124491 -108.235320 7.429672
31 1hdn_first_cpu2 -0.885979 -107.301542 -119.014212 13.220025
32 1st7_first_cpu2 0.094510 -94.678465 -93.632163 11.070768
33 1n88_first_cpu2 -1.893374 -135.207312 -160.668360 13.447449
34 1d6o_first_cpu2 -0.079584 -151.575120 -152.661725 13.653635
35 1hcd_first_cpu2 -2.233062 -147.139945 -187.577201 18.108437
36 2ga5_first_cpu2 -1.914173 -143.747846 -167.313848 12.311321
37 1j5u_first_cpu2 -0.451935 -161.967877 -172.854277 24.088436
38 3o4d_first_cpu2 -1.906619 -137.545352 -172.938935 18.563535
39 1k0s_first_cpu2 -0.304326 -248.581594 -265.717503 56.307796

In [158]:
list(range(0, 11, 2))


Out[158]:
[0, 2, 4, 6, 8, 10]

In [149]:
cutoff = 100
os.chdir(f"{pre}")
# gamma_file_name = "gamma_iter1_combined_mar06.dat"
# gamma_file_name = "/Users/weilu/Research/server/sep_2019/peptide_optimization/saved_gammas/cutoff100"

gamma_file_name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff}_impose_Aprime_constraint"
print(gamma_file_name)
data = validate_hamiltonian_wei("phi_list.txt", "protein_list", gamma_file_name, "openMM", 500, mode=0)
data


saved_gammas/iter2_cutoff100_impose_Aprime_constraint
0 1.521157249771424
Out[149]:
Protein Z_scores E_native E_mgs Std_mg
0 1e0m_first 1.521157 -49.763807 -46.612263 2.071807
1 1w4e_first 1.592202 -70.535374 -65.223921 3.335917
2 1e0g_first 1.884390 -69.930112 -64.347835 2.962380
3 2wqg_first 1.679586 -79.734417 -74.762509 2.960199
4 1jo8_first 3.379647 -99.198759 -85.295219 4.113904
5 1fex_first 2.226026 -87.088085 -80.434049 2.989200
6 2l6r_first 0.811191 -88.949968 -86.235579 3.346178
7 1c8c_first 2.939662 -118.561042 -104.969264 4.623585
8 1g6p_first 5.954226 -137.487371 -105.977257 5.292059
9 1mjc_first 4.651391 -134.079942 -106.915011 5.840174
10 2jmc_first 6.742359 -141.098101 -107.506490 4.982175
11 1hdn_first 4.348683 -162.324260 -132.127625 6.943857
12 1st7_first 7.077532 -150.351135 -123.933826 3.732559
13 1n88_first 5.899987 -190.348134 -149.203814 6.973629
14 1d6o_first 5.176820 -184.602655 -152.232410 6.252921
15 1hcd_first 8.992712 -203.895912 -152.825464 5.679093
16 2ga5_first 2.217917 -181.729017 -169.600390 5.468478
17 1j5u_first 5.662433 -226.402649 -182.813738 7.697912
18 3o4d_first 14.123009 -260.134663 -159.907271 7.096745
19 1k0s_first 7.701763 -263.146948 -208.174951 7.137586
20 1e0m_first_cpu2 2.583194 -49.763807 -44.465255 2.051163
21 1w4e_first_cpu2 2.305123 -70.535374 -63.154888 3.201776
22 1e0g_first_cpu2 2.062306 -69.930112 -62.880654 3.418240
23 2wqg_first_cpu2 2.070491 -79.734417 -73.722845 2.903452
24 1jo8_first_cpu2 5.183286 -99.198759 -77.180833 4.247870
25 1fex_first_cpu2 3.186733 -87.088085 -77.853288 2.897888
26 2l6r_first_cpu2 1.190520 -88.949968 -84.955735 3.355033
27 1c8c_first_cpu2 3.238538 -118.561042 -104.272332 4.412086
28 1g6p_first_cpu2 7.230664 -137.487371 -103.586079 4.688545
29 1mjc_first_cpu2 7.040663 -134.079942 -102.517355 4.482900
30 2jmc_first_cpu2 6.798587 -141.098101 -106.137046 5.142400
31 1hdn_first_cpu2 5.104582 -162.324260 -128.224101 6.680304
32 1st7_first_cpu2 7.338657 -150.351135 -122.448124 3.802196
33 1n88_first_cpu2 7.395080 -190.348134 -145.380881 6.080698
34 1d6o_first_cpu2 5.799963 -184.602655 -149.016615 6.135564
35 1hcd_first_cpu2 8.554579 -203.895912 -152.254875 6.036655
36 2ga5_first_cpu2 2.925030 -181.729017 -165.637496 5.501319
37 1j5u_first_cpu2 7.935676 -226.402649 -174.790731 6.503783
38 3o4d_first_cpu2 14.675179 -260.134663 -156.538632 7.059269
39 1k0s_first_cpu2 7.728358 -263.146948 -208.122217 7.119848

In [181]:
pwd


Out[181]:
'/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization'

In [182]:
cutoff_list = [100, 200, 300, 400, 500, 600]
cutoff_list += [10, 20, 30, 40, 50, 80]
save_gamma_pre = "/Users/weilu/Research/server/dec_2019/multiDensityOptimization/optimization_iteration1/optimization_iter4/saved_gammas"
trial_name = "iter4"
os.system(f"mkdir -p {save_gamma_pre}/figures")
for cutoff_i in cutoff_list:
    # cutoff_i = 400
    name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff_i}_impose_Aprime_constraint"
    filtered_gamma = np.loadtxt(name)
    figureName = f"{save_gamma_pre}/figures/{trial_name}_cutoff{cutoff_i}"
    title = f"{trial_name}_cutoff{cutoff_i}"
    show_together(filtered_gamma, figureName, title=title)



In [151]:
cutoff_list = [100, 200, 300, 400, 500]
cutoff_list += [10, 20, 30, 40, 50, 80]
os.system(f"mkdir -p {save_gamma_pre}/figures")
for cutoff_i in cutoff_list:
    # cutoff_i = 400
    name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff_i}_impose_Aprime_constraint"
    filtered_gamma = np.loadtxt(name)
    figureName = f"{save_gamma_pre}/figures/{trial_name}_cutoff{cutoff_i}"
    title = f"{trial_name}_cutoff{cutoff_i}"
    show_together(filtered_gamma, figureName, title=title)



In [4]:
# pdb list
pre = "/Users/weilu/Research/server/dec_2019/multiDensityOptimization/awsem_contact_term/"
databaseFolder = pre + "database/dompdb/"

In [13]:
pdbFolderList = glob.glob(databaseFolder+"*.pdb")
pdbNames = [a.split("/")[-1].split(".")[0] for a in pdbFolderList]

In [14]:
len(pdbNames)


Out[14]:
1825

In [21]:
filtered_pdbNames = []
for pdb in pdbNames:
    if os.path.exists(pre+f"/database/S20_seq/{pdb}.seq"):
        filtered_pdbNames.append(pdb)
    else:
        # print(pdb)
        pass

In [22]:
os.system(f"mkdir -p {pre}/alignments")
for pdb in filtered_pdbNames:
    if os.path.exists(f"/Users/weilu/Research/optimization/mediated_term/multisequenceanddcafrustratometry/{pdb}_filtered_0.05.seqs"):
        # filtered_pdbNames.append(pdb)
        os.system(f"cp /Users/weilu/Research/optimization/mediated_term/multisequenceanddcafrustratometry/{pdb}_filtered_0.05.seqs {pre}/alignments/")
    else:
        print(pdb)
        # pass

In [23]:
with open(f"{pre}/protein_list", "w") as out:
    for pdb in filtered_pdbNames:
        out.write(pdb+"\n")

In [24]:
# information about alignments
info = []
for pdb in filtered_pdbNames:
    name = pdb
    with open(f"{pre}/alignments/{name}_filtered_0.05.seqs") as f:
        a = f.readlines()
    info.append([pdb, len(a)])

In [3]:
pre = "/Users/weilu/Research/server/dec_2019/multiDensityOptimization/awsem_contact_term/gammas/"
trial_name = "trial_1_multiseq"

In [4]:
pp = f"protein_list_phi_pairwise_contact_well4.5_6.5_5.0_10phi_density_mediated_contact_well6.5_9.5_5.0_10_2.6_7.0phi_burial_well4.0"
# pp = f"protein_list_phi_pairwise_contact_well4.5_6.5_5.0_10phi_density_mediated_contact_well6.5_9.5_5.0_10_2.6_7.0phi_burial_well4.0phi_debye_huckel_well0"

In [87]:
gamma_file_name = "/Users/weilu/opt/parameters/original_gamma"
original_gamma = np.loadtxt(gamma_file_name)
# a = list(original_gamma)
# a.append(1)
# original_gamma_deybe = np.array(a)
# we want to impose additional contraint so that A' * gamma = constnat.(-562.23)
cutoff_list = [100, 200, 300, 400, 500, 600]
cutoff_list += [10, 20, 30, 40, 50, 80]
for cutoff_i in cutoff_list:
    A, A_prime, filtered_gamma, filtered_B_inv = get_filtered_gamma(pre, cutoff_i, pp)
    c = np.dot(A_prime, original_gamma)
#     c = np.dot(A_prime, original_gamma)
    B_inv = filtered_B_inv
    lambda_2 = (A_prime.dot(B_inv).dot(A) - c) / (A_prime.dot(B_inv).dot(A_prime) )
    gamma_new = B_inv.dot(A-A_prime*lambda_2)
    # impose A'gamma
    save_gamma_pre = "/Users/weilu/Research/server/dec_2019/saved_gammas/"
    name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff_i}_impose_Aprime_constraint"
    np.savetxt(name, gamma_new)
    cmd = f"convert_to_simulation_format.py {name} {save_gamma_pre}/Dec11_{trial_name}_cutoff{cutoff_i}_impose_Aprime_constraint"
    os.system(cmd)


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-87-8725c2734ba4> in <module>
     20     np.savetxt(name, gamma_new)
     21     cmd = f"convert_to_simulation_format.py {name} {save_gamma_pre}/Dec11_{trial_name}_cutoff{cutoff_i}_impose_Aprime_constraint"
---> 22     do(cmd)

NameError: name 'do' is not defined

In [50]:
def plot_contact_all(gammas, ax, invert_sign=True, fix_colorbar=True, inferBound=False,
                        vmin=-0.3, vmax=0.3, fix_confidence_colorbar=True, confidence_vmin=0,
                        confidence_vmax=1.0, plot_confidence=False, confidence_lower=None, confidence_upper=None):
    size = 20
    interaction_matrix = np.zeros((size, size))
    i_content = 0
    for i in range(size):
        for j in range(i, size):
            index1 = hydrophobicity_map[inverse_res_type_map[i]]
            index2 = hydrophobicity_map[inverse_res_type_map[j]]
            interaction_matrix[index1][index2] = gammas[i_content]
            interaction_matrix[index2][index1] = gammas[i_content]
            i_content += 1

    # The minus sign is here to be consistent with the way AWSEM thinks about gammas
    if invert_sign:
        interaction_matrix *= -1

    if inferBound:
        vmin = np.min(interaction_matrix)
        vmax = np.max(interaction_matrix)

    if fix_colorbar:
        cax = ax.pcolor(interaction_matrix, vmin=vmin,
                        vmax=vmax, cmap="bwr")
    else:
        cax = ax.pcolor(interaction_matrix, cmap="RdBu_r")
    # fig.colorbar(cax)
    plt.colorbar(cax,fraction=0.046, pad=0.04)
    # put the major ticks at the middle of each cell
    ax.set_yticks(np.arange(interaction_matrix.shape[0]) + 0.5, minor=False)
    ax.set_xticks(np.arange(interaction_matrix.shape[1]) + 0.5, minor=False)

    ax.set_xticklabels(hydrophobicity_letters)
    ax.set_yticklabels(hydrophobicity_letters)

    # plt.savefig('direct_contact.pdf')
    # plt.show()

In [83]:
def show_together(filtered_gamma, figureName, title="test"):
    fig = plt.figure()
    ax1=plt.subplot(1, 3, 1)
    ax1.set_aspect('equal')
    plot_contact_all(filtered_gamma[:210], ax1, inferBound=True)
    ax2=plt.subplot(1, 3, 2)
    ax2.set_aspect('equal')
    plot_contact_all(filtered_gamma[210:420], ax2, inferBound=True)
    ax3=plt.subplot(1, 3, 3)
    ax3.set_aspect('equal')
    plot_contact_all(filtered_gamma[420:], ax3, inferBound=True)
    ax1.title.set_text('Direct')
    ax2.title.set_text('High density(protein)')
    ax3.title.set_text('Low density(water)')
    fig.suptitle(title, fontsize=20, y=0.75)
    fig.tight_layout()
    plt.savefig(figureName)

In [88]:
cutoff_list = [100, 200, 300, 400, 500, 600]
cutoff_list += [10, 20, 30, 40, 50, 80]
for cutoff_i in cutoff_list:
    # cutoff_i = 400
    name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff_i}_impose_Aprime_constraint"
    filtered_gamma = np.loadtxt(name)
    figureName = f"/Users/weilu/Research/server/dec_2019/saved_gammas/figures/{trial_name}_cutoff{cutoff_i}"
    title = f"{trial_name}_cutoff{cutoff_i}"
    show_together(filtered_gamma, figureName, title=title)



In [80]:
# fig, ax = plt.subplots(nrows=3, ncols=1)
cutoff_i = 400
name = f"{save_gamma_pre}/{trial_name}_cutoff{cutoff_i}_impose_Aprime_constraint"
filtered_gamma = np.loadtxt(name)

fig = plt.figure()
ax1=plt.subplot(1, 3, 1)
ax1.set_aspect('equal')
plot_contact_all(filtered_gamma[:210], ax1, inferBound=True)
ax2=plt.subplot(1, 3, 2)
ax2.set_aspect('equal')
plot_contact_all(filtered_gamma[210:420], ax2, inferBound=True)
ax3=plt.subplot(1, 3, 3)
ax3.set_aspect('equal')
plot_contact_all(filtered_gamma[420:], ax3, inferBound=True)
ax1.title.set_text('Direct')
ax2.title.set_text('High density(protein)')
ax3.title.set_text('Low density(water)')
fig.suptitle(f"{trial_name}_cutoff{cutoff_i}", fontsize=20, y=0.75)
fig.tight_layout()
# fig.tight_layout(rect=[0, 0.03, 1, 0.95])
# fig.subplots_adjust(top=0.98)
# plt.savefig(f"/Users/weilu/Research/server/dec_2019/saved_gammas/figures/{trial_name}_cutoff{cutoff_i}")



In [202]:
a = pd.read_csv("/Users/weilu/Research/server/dec_2019/iterative_optimization/original_pdbs/Final_2Sm.csv")

In [203]:
a = a.query("Class == 'α'")

In [204]:
pdb_list = []
for pdb in a.PDB.unique():
    pdb = str(pdb)
    if "(" in pdb:
        pass
    elif pdb == "nan":
        pass
    else:
        pdb_list.append(pdb)

In [205]:
len(pdb_list)


Out[205]:
12

In [206]:
second_test_test = a.query("PDB in @pdb_list").reset_index(drop=True).iloc[:, :23]

In [207]:
second_test_test.to_csv("/Users/weilu/Research/server/dec_2019/iterative_optimization/original_pdbs/second_test_set.csv")

In [208]:
second_test_test.PDB.str.lower().to_list()


Out[208]:
['1ba5',
 '1fex',
 '1idy',
 '1imq',
 '1ryk',
 '1st7',
 '1w4e',
 '1w4j',
 '1yyj',
 '2a3d',
 '2wxc',
 '2wqg']

In [ ]:
# randomly select 20 out
randomly_selected = random.sample(pdb_list, 20)

In [128]:
first_test_test = a.query("PDB in @randomly_selected").reset_index(drop=True).iloc[:, :23]

In [129]:
first_test_test.to_csv("/Users/weilu/Research/server/dec_2019/iterative_optimization/original_pdbs/first_test_set.csv")

In [137]:
d = pd.read_csv("/Users/weilu/Research/server/dec_2019/iterative_optimization/original_pdbs/first_test_set.csv", index_col=0)

In [142]:
d.PDB.str.lower().to_list()


Out[142]:
['1fex',
 '1st7',
 '1w4e',
 '2wqg',
 '1d6o',
 '1e0g',
 '1hdn',
 '1j5u',
 '1n88',
 '2ga5',
 '1c8c',
 '1k0s',
 '1g6p',
 '1e0m',
 '1hcd',
 '1jo8',
 '1mjc',
 '2jmc',
 '3o4d',
 '2l6r']

In [111]:
len(randomly_selected)


Out[111]:
20

In [139]:
len(a)


Out[139]:
180

In [145]:
d.sort_values("Lpdb")


Out[145]:
No. Protein short name PDB Class Fold Lpdb L pH Temp (°C) Folding type ... ln(ku) ln(ku) (25°C) Unnamed: 15 βT pH.1 Temp (°C).1 Folding type.1 ln(kf) Unnamed: 21 Comment
13 59 Prototype WW domain [40] 1E0M β WW domain-based designs 37.0 38.0 7.0 25.0 2S ... 7.1 NaN NaN 0.64 NaN NaN
2 17 PSBD (Bacillus stearothermophilus) [12] 1W4E α Peripheral subunit-binding domain of 2-oxo aci... 45.0 45.0 5.5 25.0 2S ... 3.0 NaN NaN 0.65 7.9\n NA 41\n NA 9.69\n NA NaN We have adopted the data from reference (12), ...
5 33 LysM domain [26] 1E0G α+β LysM domain 48.0 64.0 7.0 10.5 2S ... 2.2 3.5 3.3 0.69 NaN NaN
3 23 SAP domain of THO1 [20] 2WQG α LEM/SAP HeH motif 51.0 51.0 6.0 20.0 2S ... 4.1 4.6 4.6 0.67 NaN NaN NaN NaN NaN NaN
15 61 Abp1 SH3 [5] 1JO8 β SH3-like barrel 58.0 68.0 7.0 25.0 2S ... -2.7 NaN NaN 0.88 NaN There is some evidence for the presence of a f...
0 6 RAP1 (Human) [2] 1FEX α DNA/RNA-binding 3-helical bundle 59.0 59.0 5.7 25.0 2S ... 2.9 NaN NaN 0.82 NaN NaN
19 88 gpW [69] 2L6R β gpW/XkdW-like 62.0 62.0 6.0 37.0 2S ... NaN NaN NaN NaN NaN NaN NaN NaN NaN The protein is a downhill folder, which shows ...
10 50 Sso7d [35] 1C8C β SH3-like barrel 64.0 64.0 6.1 20.0 2S ... -3.2 -2.6 -2.6 0.63 NaN NaN
12 57 Cold shock-like protein (Thermotoga maritima) ... 1G6P β OB-fold 66.0 68.0 7.0 25.0 2S ... -4.0 NaN NaN 0.86 NaN NaN
16 67 CspA [47] 1MJC β OB-fold 69.0 69.0 7.0 25.0 2S ... 1.4 NaN NaN 0.94 NaN NaN
17 80 SPCp41 [65] 2JMC β SH3-like barrel 75.0 75.0 7.0 25.0 2S ... -1.6 NaN NaN 0.76 NaN NaN NaN NaN NaN NaN
6 35 HPr [27] 1HDN α+β HPr-like 85.0 85.0 7.0 20.0 2S ... -6.2 -5.3 -5.3 0.64 NaN NaN
1 14 ACBP (Yeast) [10] 1ST7 α Acyl-CoA binding protein-like 86.0 86.0 5.3 5.0 2S ... -6.4 -3.0 -2.8 0.60 N2S NaN This protein was classified as a N2S protein i...
8 37 Ribosomal protein L23 (Thermus thermophilus) [5] 1N88 α+β Ribosomal proteins S24e, L23 and L15e 96.0 96.0 7.0 25.0 2S ... -3.9 NaN NaN 0.75 NaN NaN
4 29 FKBP12 [5] 1D6O α+β FKBP-like 107.0 107.0 7.0 25.0 2S ... -8.1 NaN NaN 0.70 NaN NaN
14 60 Hisactophilin [41] 1HCD β β-Trefoil 118.0 118.0 6.7 20.0 2S ... -9.9 -9.5 NaN 0.73 7.7\n 7.7 —\n — N2S 4.6\n 4.0 NaN We have adopted the data from reference (86), ...
9 48 Frataxin (Yeast) [33] 2GA5 β N domain of copper amine oxidase-like 119.0 123.0 7.0 25.0 2S ... -3.1 NaN NaN 0.71 NaN NaN NaN NaN NaN The refolding kinetics were measured in the pr...
7 36 TM1083 [5] 1J5U α+β MTH1598-like 124.0 124.0 7.0 25.0 2S ... -5.3 NaN NaN 0.64 —\n NA —\n NA —\n NA —\n NA NaN NaN
18 87 Symfoil-4P [68] 3O4D β β-Trefoil 126.0 140.0 6.6 25.0 2S ... -13.7 NaN NaN 0.84 NaN NaN NaN NaN NaN NaN
11 51 CheW (Thermotoga maritima) [5] 1K0S β OB-fold 151.0 151.0 7.0 25.0 2S ... -12.1 NaN NaN 0.64 NaN NaN

20 rows × 23 columns


In [ ]: