In [1]:
import os
import sys
import random
import time
from random import seed, randint
import argparse
import platform
from datetime import datetime
import imp
import numpy as np
import fileinput
from itertools import product
import pandas as pd
from scipy.interpolate import griddata
from scipy.interpolate import interp2d
import seaborn as sns
from os import listdir

import matplotlib.pyplot as plt
import seaborn as sns
from scipy.interpolate import griddata
import matplotlib as mpl
sys.path.insert(0,'..')
from notebookFunctions import *
# from .. import notebookFunctions

%matplotlib inline
plt.rcParams['figure.figsize'] = (10,6.180)    #golden ratio
# %matplotlib notebook
%load_ext autoreload
%autoreload 2

In [27]:
pre = "/Users/weilu/Research/server/mar_2018/05_week/"
temp = 280
location = pre + "/eighth_with_real_distance/_280-350/2d_z_qw/force_0.0/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(4, 14), block=[-20,-10,0.6,0.7], end=(26,22), plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location2 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location2, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# # plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x10a84e8d0>
Out[27]:
[<matplotlib.lines.Line2D at 0x1a17941390>]

In [31]:
pre = "/Users/weilu/Research/server/mar_2018/05_week/"
temp = 280
location = pre + "/eighth_with_real_distance/_280-350/2d_z_qw/force_0.2/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(4, 14), block=[-20,-10,0.55,0.7], end=(26,22), plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location2 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location2, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# # plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x10a84e8d0>
Out[31]:
[<matplotlib.lines.Line2D at 0x10ce1c2e8>]

In [36]:
data = pd.read_feather("/Users/weilu/Research/server/mar_2018/eighth/rg_0.15_lipid_1.0_mem_1_go_0.8/rerun_1_27_Mar_231139.feather")
dic = {"T0":280, "T1":290, "T2":300, "T3":310, "T4":320, "T5":335, "T6":350, "T7":365, "T8":380, "T9":410, "T10":440, "T11":470}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[36]:
<seaborn.axisgrid.FacetGrid at 0x1a1f7e1278>

In [37]:
# rerun 1 
data.query("z_h6 < -20 and Qw > 0.25 and Qw < 0.35").plot.hexbin("DisReal", "TotalE", cmap="seismic", sharex=False)


Out[37]:
<matplotlib.axes._subplots.AxesSubplot at 0x10c468d30>

In [32]:
data = pd.read_feather("/Users/weilu/Research/server/mar_2018/eighth/rg_0.15_lipid_1.0_mem_1_go_0.8/rerun_3_27_Mar_231139.feather")
dic = {"T0":280, "T1":290, "T2":300, "T3":310, "T4":320, "T5":335, "T6":350, "T7":365, "T8":380, "T9":410, "T10":440, "T11":470}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[32]:
<seaborn.axisgrid.FacetGrid at 0x1a47d19390>

In [78]:
a = np.loadtxt("/Users/weilu/Research/server/apr_2018/TMHC2/test/rnative.dat")

In [79]:
a.shape


Out[79]:
(156, 156)

In [108]:
a.min()


Out[108]:
0.0

In [81]:
plt.imshow(a)


Out[81]:
<matplotlib.image.AxesImage at 0x10c44e320>

In [82]:
table = {"A", "R", "N", "D", "C", "Q", "E", "G", "H", "I", "L", "K", "M", "F", "P", "S", "T", "W", "Y", "V"}

In [86]:
scTMHC2_seq = "MTRTEIIRELERSLRLQLVLAIFLMALLIVLLWLQQNGSSNNNVNYLLIVILVLVLVIVALAVIQKYLVEQLKRQADPTDDSRTEIIRELERSLRLQLVLAIFLMALLIVLLWLQQNGSSNNNVNYLLIVILVLVLVIVALAVTQKYLVEQLKRQD"

In [88]:
t = "MTRTEIIRELERSLRLQLVLAIFLMALLIVLLWLQQNGSSNNNVNYLLIVILVLVLVIVALAVIQKYLVEQLKRQADPTDDSRTEIIRELERSLRLQLVLAIFLMALLIVLLWLQQNGSSNNNVNYLLIVILVLVLVIVALAVTQKYLVEQLKRQD"

In [98]:
list(set(t))


Out[98]:
['K',
 'R',
 'T',
 'Q',
 'Y',
 'G',
 'S',
 'P',
 'V',
 'F',
 'L',
 'W',
 'M',
 'A',
 'I',
 'N',
 'E',
 'D']

In [106]:
"G"*156


Out[106]:
'GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG'

In [89]:
scTMHC2_seq == t


Out[89]:
True

In [100]:
from collections import defaultdict

In [101]:
>>> s = t
>>> d = defaultdict(int)
>>> for k in s:
...     d[k] += 1
...
>>> d.items()


Out[101]:
dict_items([('M', 3), ('T', 5), ('R', 10), ('E', 8), ('I', 15), ('L', 38), ('S', 7), ('Q', 12), ('V', 20), ('A', 9), ('F', 2), ('W', 2), ('N', 10), ('G', 2), ('Y', 4), ('K', 4), ('D', 4), ('P', 1)])

In [ ]:
for i in scTMHC2_seq:
    dic[i] += 1

In [91]:
for i in scTMHC2_seq:
    if i not in table:
        print(i)

In [75]:
start = 2
end = 38
helix1 = " ".join([str(i) for i in list(range(start*3-2, end*3+1))])
start = 43
end = 75
helix2 = " ".join([str(i) for i in list(range(start*3-2, end*3+1))])
start = 80
end = 117
helix3 = " ".join([str(i) for i in list(range(start*3-2, end*3+1))])
start = 123
end = 154
helix4 = " ".join([str(i) for i in list(range(start*3-2, end*3+1))])

In [76]:
print(helix1)
print(helix2)
print(helix3)
print(helix4)


4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

In [33]:
# rerun 3
data.query("z_h6 < -20 and Qw > 0.25 and Qw < 0.35").plot.hexbin("DisReal", "TotalE", cmap="seismic", sharex=False)


Out[33]:
<matplotlib.axes._subplots.AxesSubplot at 0x10ce5e278>

In [35]:
data.query("z_h6 < -20 and Qw > 0.25 and Qw < 0.35").plot.hexbin("DisReal", "TotalE", cmap="seismic", sharex=False)


Out[35]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a4b7c3f28>

In [34]:
data = pd.read_feather("/Users/weilu/Research/server/mar_2018/eighth/force_0.03_rg_0.15_lipid_1.0_mem_1_go_0.8/rerun_3_30_Mar_135549.feather")
dic = {"T0":280, "T1":290, "T2":300, "T3":310, "T4":320, "T5":335, "T6":350, "T7":365, "T8":380, "T9":410, "T10":440, "T11":470}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[34]:
<seaborn.axisgrid.FacetGrid at 0x1a2129a390>

In [ ]:

i235d


In [133]:
plt.plot(range(len(f)), i235d,range(len(f)), orignal_2, range(len(f)), i255d)


Out[133]:
[<matplotlib.lines.Line2D at 0x1a47e38940>,
 <matplotlib.lines.Line2D at 0x1a47e38a90>,
 <matplotlib.lines.Line2D at 0x1a47e38f28>]

In [112]:
origianl = f

In [132]:
pre = "/Users/weilu/Research/server/apr_2018/01_week/"
temp = 260
location = pre + "/sixth_i235d/_280-350/2d_z_qw/force_0.2/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 14), plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
# location2 = location + f"evpb-{temp}.dat"
# (xi,yi,zi) = plot2d(location2, zmax=100)
# plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# # plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
# plt.figure()
# f_on_path = [zi[tuple(p)] for p in reversed(path)]
# plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)
i235d = f



In [22]:
pre = "/Users/weilu/Research/server/apr_2018/01_week/"
temp = 260
location = pre + "/sixth_orignal/_280-350/2d_z_qw/force_0.2/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 14), plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
# location2 = location + f"evpb-{temp}.dat"
# (xi,yi,zi) = plot2d(location2, zmax=100)
# plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# # plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
# plt.figure()
# f_on_path = [zi[tuple(p)] for p in reversed(path)]
# plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)
orignal_2 = f


higher force


In [31]:
pre = "/Users/weilu/Research/server/apr_2018/01_week/"
temp = 260
location = pre + "/sixth_orignal/_280-350/2d_z_qw/force_0.4/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 14), plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
# location2 = location + f"evpb-{temp}.dat"
# (xi,yi,zi) = plot2d(location2, zmax=100)
# plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# # plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
# plt.figure()
# f_on_path = [zi[tuple(p)] for p in reversed(path)]
# plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)



In [4]:
pre = "/Users/weilu/Research/server/apr_2018/01_week/"
temp = 260
location = pre + "/sixth_i255d/_280-350/2d_z_qw/force_0.2/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 14), plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
# location2 = location + f"evpb-{temp}.dat"
# (xi,yi,zi) = plot2d(location2, zmax=100)
# plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# # plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
# plt.figure()
# f_on_path = [zi[tuple(p)] for p in reversed(path)]
# plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)
i255d = f



In [25]:
pre = "/Users/weilu/Research/server/mar_2018/05_week/"
temp = 260
location = pre + "/sixth_i235d/_280-350/2d_z_qw/force_0.2/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 14), plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location2 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location2, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
<ipython-input-25-de5f98cb66b4> in <module>()
      7 # plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
      8 location2 = location + f"evpb-{temp}.dat"
----> 9 (xi,yi,zi) = plot2d(location2, zmax=100)
     10 plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
     11 # plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)

~/opt/notebook/notebookFunctions.py in plot2d(location, temp, zmin, zmax, xlabel, ylabel, title, outname)
     84 def plot2d(location, temp="450", zmin=0, zmax=30, xlabel="xlabel", ylabel="ylabel", title="", outname=None):
     85     titlefontsize = 28
---> 86     data = np.loadtxt(location)
     87     xi, yi, zi = getxyz(data, zmin=zmin, zmax=zmax)
     88     # plt.contour(xi, yi, zi, 50, linewidths=0.25,colors='k')

~/anaconda3/lib/python3.6/site-packages/numpy/lib/npyio.py in loadtxt(fname, dtype, comments, delimiter, converters, skiprows, usecols, unpack, ndmin)
    896                 fh = iter(open(fname, 'U'))
    897             else:
--> 898                 fh = iter(open(fname))
    899         else:
    900             fh = iter(fname)

FileNotFoundError: [Errno 2] No such file or directory: '/Users/weilu/Research/server/mar_2018/05_week//sixth_i235d/_280-350/2d_z_qw/force_0.2/evpb-260.dat'

In [262]:
t = np.loadtxt(location2)

In [263]:
tt = np.where(np.isnan(t), 32, t)

In [259]:
t = t[~np.isnan(t).any(axis=1)]

In [264]:
plt.scatter(tt[:,1], tt[:,2], tt[:,3])


Out[264]:
<matplotlib.collections.PathCollection at 0x1a4a6186a0>

In [238]:
plt.scatter(t[:,1], t[:,2], t[:,3])


Out[238]:
<matplotlib.collections.PathCollection at 0x1a3c42f9b0>

In [269]:
pre = "/Users/weilu/Research/server/mar_2018/05_week"
temp = 260
location = pre + "/sixth_i235d/_280-350/2d_z_qw/force_0.2/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 14), plot1d=True, save=False, zmax=32)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
# location2 = location + f"evpb-{temp}.dat"
# (xi,yi,zi) = plot2d(location2, zmax=100)
# plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# # plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
# plt.figure()
# f_on_path = [zi[tuple(p)] for p in reversed(path)]
# plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


Ninth freeEnergy

apply 0.06 force, check force 0.05 later. q 0.3, z=-20 is a region I hope the expected distance to be 80.


In [329]:
t = np.loadtxt(location2)

In [333]:
plt.scatter(t[:,1], t[:,2], t[:,3])


Out[333]:
<matplotlib.collections.PathCollection at 0x1a2eceae10>

In [339]:
tt


Out[339]:
array([[  5.00000000e+00,  -4.06340000e+01,   1.48000000e-01, ...,
          0.00000000e+00,  -1.30005700e+03,  -1.32762600e+03],
       [  6.00000000e+00,  -4.06340000e+01,   1.75000000e-01, ...,
          0.00000000e+00,  -1.31851000e+03,  -1.34470900e+03],
       [  3.40000000e+01,  -3.89110000e+01,   1.21000000e-01, ...,
          0.00000000e+00,  -1.20744800e+03,  -1.23625200e+03],
       ..., 
       [  8.75000000e+02,   9.32900000e+00,   1.48000000e-01, ...,
          0.00000000e+00,  -1.46979300e+03,  -1.48809600e+03],
       [  8.76000000e+02,   9.32900000e+00,   1.75000000e-01, ...,
          0.00000000e+00,  -1.37493100e+03,  -1.40183000e+03],
       [  8.77000000e+02,   9.32900000e+00,   2.02000000e-01, ...,
          0.00000000e+00,  -1.38906000e+03,  -1.41404800e+03]])

In [342]:
res = 30
xi = np.linspace(min(t[:,1]), max(t[:,1]), res)
yi = np.linspace(min(t[:,2]), max(t[:,2]), res)

In [344]:
yi


Out[344]:
array([ 0.013     ,  0.03989655,  0.0667931 ,  0.09368966,  0.12058621,
        0.14748276,  0.17437931,  0.20127586,  0.22817241,  0.25506897,
        0.28196552,  0.30886207,  0.33575862,  0.36265517,  0.38955172,
        0.41644828,  0.44334483,  0.47024138,  0.49713793,  0.52403448,
        0.55093103,  0.57782759,  0.60472414,  0.63162069,  0.65851724,
        0.68541379,  0.71231034,  0.7392069 ,  0.76610345,  0.793     ])

In [341]:
xi


Out[341]:
array([-40.634     , -38.91113793, -37.18827586, -35.46541379,
       -33.74255172, -32.01968966, -30.29682759, -28.57396552,
       -26.85110345, -25.12824138, -23.40537931, -21.68251724,
       -19.95965517, -18.2367931 , -16.51393103, -14.79106897,
       -13.0682069 , -11.34534483,  -9.62248276,  -7.89962069,
        -6.17675862,  -4.45389655,  -2.73103448,  -1.00817241,
         0.71468966,   2.43755172,   4.16041379,   5.88327586,
         7.60613793,   9.329     ])

In [356]:
mask = np.ones((res,res))*32
zi = t[:,3]
index_list = t[:,0]
count = 0
for i in range(res):
    for j in range(res):
        pos = i*res + j
        if count < len(index_list):
            if pos == int(index_list[count]):
                mask[i][j] = zi[count]
                count += 1

In [359]:
plt.imshow(mask.T)


Out[359]:
<matplotlib.image.AxesImage at 0x1a488a67b8>

In [353]:
index_li


Out[353]:
(440,)

In [338]:
t = np.loadtxt(location2)
tt = np.where(np.isnan(t), 32, t)
# t = t[~np.isnan(t).any(axis=1)] 
t = tt
plt.scatter(t[:,1], t[:,2], c=t[:,3], cmap="jet")
plt.colorbar()


Out[338]:
<matplotlib.colorbar.Colorbar at 0x1a443e7a20>

In [223]:
pre = "/Users/weilu/Research/server/apr_2018/01_week"
temp = 330
location = pre + "/ninth_freeEnergy_7_less_temp/_280-350/2d_z_qw/force_0.0/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), block=[-15,-10,0.0,0.1], plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x10a84e8d0>
Out[223]:
[<matplotlib.lines.Line2D at 0x1a2b5923c8>]

In [209]:
pre = "/Users/weilu/Research/server/apr_2018/01_week"
temp = 350
location = pre + "/ninth_freeEnergy_7_less_temp/_280-350/2d_z_qw/force_0.0/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), block=[-15,-10,0.0,0.1], plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x10a84e8d0>
Out[209]:
[<matplotlib.lines.Line2D at 0x1a2767d2b0>]

In [102]:
pre = "/Users/weilu/Research/server/apr_2018/01_week"
temp = 300
location = pre + "/ninth_freeEnergy_5_less_temp/_280-350/2d_z_qw/less_bias_force_0.1/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), block=[-15,-10,0.0,0.1], plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x1a13027940>
Out[102]:
[<matplotlib.lines.Line2D at 0x1a4cb1ecf8>]

In [89]:
pre = "/Users/weilu/Research/server/apr_2018/01_week"
temp = 300
location = pre + "/ninth_freeEnergy_5_less_temp/_280-350/2d_z_qw/quick/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), block=[-15,-10,0.0,0.1], plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x1a13027940>
Out[89]:
[<matplotlib.lines.Line2D at 0x1a543aa2b0>]

In [95]:
pre = "/Users/weilu/Research/server/apr_2018/01_week"
temp = 300
location = pre + "/ninth_freeEnergy_5/_280-350/2d_z_qw/force_0.1/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), block=[-15,-10,0.0,0.1], plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x1a13027940>
Out[95]:
[<matplotlib.lines.Line2D at 0x1a5437a400>]

In [20]:
pre = "/Users/weilu/Research/server/apr_2018/01_week"
temp = 320
location = pre + "/ninth_freeEnergy_5_less_temp/_280-350/2d_z_qw/force_0.0/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), block=[-15,-10,0.0,0.2], plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x1a13027940>
Out[20]:
[<matplotlib.lines.Line2D at 0x1a1e629320>]

In [379]:
pre = "/Users/weilu/Research/server/apr_2018/01_week"
temp = 300
location = pre + "/ninth_freeEnergy_5_less_temp/_280-350/2d_z_qw/high_temp/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), block=[-15,-10,0.0,0.1], plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x112feeda0>
Out[379]:
[<matplotlib.lines.Line2D at 0x1a49248710>]

In [321]:
pre = "/Users/weilu/Research/server/apr_2018/01_week"
temp = 290
location = pre + "/ninth_freeEnergy_5_less_temp/_280-350/2d_z_qw/force_0.0/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), block=[-20,-15,0.6,0.7], plot1d=True, save=False)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location2 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location2, zmax=100)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x112feeda0>
Out[321]:
[<matplotlib.lines.Line2D at 0x1a526be5f8>]

In [ ]:
block = (0.6, )

In [173]:
np.searchsorted(xi, 20)


Out[173]:
2

In [172]:
xi


Out[172]:
array([ 16.497     ,  19.26941379,  22.04182759,  24.81424138,
        27.58665517,  30.35906897,  33.13148276,  35.90389655,
        38.67631034,  41.44872414,  44.22113793,  46.99355172,
        49.76596552,  52.53837931,  55.3107931 ,  58.0832069 ,
        60.85562069,  63.62803448,  66.40044828,  69.17286207,
        71.94527586,  74.71768966,  77.49010345,  80.26251724,
        83.03493103,  85.80734483,  88.57975862,  91.35217241,
        94.12458621,  96.897     ])

Rerun 7


In [122]:
data = pd.read_feather("/Users/weilu/Research/server/mar_2018/ninth/force_0.06_rg_0.15_lipid_1.0_mem_1_go_0.8/rerun_7_04_Apr_231330.feather")
dic = {"T0":280, "T1":290, "T2":300, "T3":310, "T4":320, "T5":335, "T6":350, "T7":365, "T8":380, "T9":410, "T10":440, "T11":470}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])

In [123]:
rerun7 = data
# data["BiasTo"] = data["BiasTo"].apply(pd.to_numeric)

In [124]:
data.query("Temp == 300").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[124]:
<matplotlib.axes._subplots.AxesSubplot at 0x10cb1fa90>

In [154]:
data.query("Temp == 300 and DisReal > 60").shape


Out[154]:
(28983, 43)

In [125]:
data.query("Temp == 300").plot.hexbin("TotalE", "Qw", cmap="seismic", sharex=False)


Out[125]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a22c04a90>

In [139]:
data.query("Temp == 300 and Qw > 0.6").plot.hexbin("TotalE", "DisReal", cmap="seismic", sharex=False)


Out[139]:
<matplotlib.axes._subplots.AxesSubplot at 0x10cea14a8>

In [134]:
data.query("Temp == 300 and Qw > 0.6")["TotalE"].hist(bins=50)
data.query("Temp == 300 and Qw > 0.6")["TotalE"].mean()


Out[134]:
-908.9993475062817

In [148]:
data.query("Temp == 300 and z_h6 < -10 and Qw > 0.3").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[148]:
<matplotlib.axes._subplots.AxesSubplot at 0x10cbd5940>

In [164]:
data.query("Temp == 300 and Qw < 0.6")["z_h6"].hist(bins=50)


Out[164]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a20134da0>

In [203]:
data.query("Temp == 300 and Qw > 0.3 and z_h6 < -10 and DisReal > 60")["TotalE"].hist(bins=50)
print(data.query("Temp == 300 and Qw > 0.3 and z_h6 < -10 and DisReal > 60")["TotalE"].mean())
data.query("Temp == 300 and Qw > 0.3 and z_h6 < -10 and DisReal > 60").shape


-858.5170866171323
Out[203]:
(7175, 43)

Two part here,

One with DisReal > 60


In [204]:
data.query("Temp == 300 and z_h6 > -10 and Qw > 0.3 and DisReal > 60")["TotalE"].hist(bins=50)
print(data.query("Temp == 300 and z_h6 > -10 and Qw > 0.3 and DisReal > 60").shape)
data.query("Temp == 300 and z_h6 > -10 and Qw > 0.3 and DisReal > 60")["TotalE"].mean()


(6221, 43)
Out[204]:
-875.0166693690952

In [195]:
t = data.query("Temp == 300 and z_h6 > -10 and Qw > 0.3 and DisReal > 60")
t.groupby(["BiasTo", "Run"])["Qw"].describe().query("count > 100")


Out[195]:
count mean std min 25% 50% 75% max
BiasTo Run
72.0 8 251.0 0.331380 0.016914 0.300520 0.318481 0.329844 0.343734 0.402180
74.0 8 115.0 0.350842 0.024570 0.300538 0.334939 0.349419 0.361610 0.435940
11 184.0 0.352030 0.025777 0.300973 0.334212 0.350647 0.364934 0.442350
78.0 2 582.0 0.350725 0.021947 0.301000 0.335213 0.349560 0.365497 0.418287
80.0 1 383.0 0.347422 0.021195 0.303433 0.331633 0.346739 0.360955 0.411149
7 478.0 0.349377 0.022634 0.300982 0.332810 0.347720 0.363692 0.418313
8 382.0 0.346878 0.021583 0.300855 0.330785 0.346393 0.360646 0.421669
9 396.0 0.349728 0.021193 0.301145 0.333405 0.349832 0.365705 0.411630
84.0 7 361.0 0.347062 0.020163 0.300202 0.332871 0.345651 0.360076 0.416170
88.0 1 489.0 0.387654 0.031921 0.300672 0.365318 0.389423 0.410119 0.472375
10 459.0 0.399617 0.030593 0.318703 0.381806 0.400317 0.419547 0.487651
90.0 9 204.0 0.344613 0.020983 0.300634 0.329445 0.344976 0.358986 0.404646
10 225.0 0.398894 0.027372 0.316385 0.383034 0.398304 0.415516 0.468483
92.0 8 471.0 0.372714 0.032957 0.302890 0.347729 0.370922 0.396583 0.470442
11 198.0 0.341023 0.020253 0.304259 0.325441 0.339567 0.353536 0.428579
96.0 5 383.0 0.339173 0.020122 0.300796 0.324488 0.338162 0.350960 0.411800
9 393.0 0.340088 0.019831 0.302228 0.325773 0.339094 0.352400 0.399826

DisReal < 60


In [190]:
data.query("Temp == 300 and z_h6 > -10 and Qw < 0.6 and DisReal < 60")["TotalE"].hist(bins=50)
data.query("Temp == 300 and z_h6 > -10 and Qw < 0.6 and DisReal < 60")["TotalE"].mean()


Out[190]:
-896.6218664373583

In [206]:
t = data.query("Temp == 300 and z_h6 > -10 and Qw < 0.6 and DisReal < 60")
t.groupby(["BiasTo", "Run"])["TotalE"].describe().query("count > 100")


Out[206]:
count mean std min 25% 50% 75% max
BiasTo Run
30.0 0 394.0 -890.251209 19.283854 -947.544810 -904.379298 -888.767989 -877.038622 -838.763927
3 620.0 -901.879032 18.444902 -961.730918 -914.355321 -901.868031 -888.899866 -845.904847
5 114.0 -889.103539 17.625567 -935.345576 -901.511543 -888.432567 -878.658842 -850.719708
7 332.0 -885.430943 17.821426 -932.626242 -897.484021 -885.885062 -873.832352 -835.073611
8 588.0 -899.772309 18.880098 -957.719562 -912.416068 -900.452462 -888.016278 -823.522148
32.0 3 632.0 -899.654913 18.584577 -951.211078 -912.247703 -899.309120 -887.062842 -843.420836
6 194.0 -883.791805 17.641747 -927.904285 -896.698596 -883.547391 -872.018513 -829.492370
9 558.0 -901.007225 19.587102 -947.474355 -913.153758 -901.538200 -888.388642 -837.419089
10 157.0 -887.753531 19.533920 -945.888816 -900.551720 -887.865169 -873.062984 -839.553259
34.0 0 303.0 -901.857320 18.758789 -956.152877 -914.247053 -900.549990 -888.930325 -857.552025
5 206.0 -881.787809 17.559785 -935.028185 -893.783233 -884.337537 -868.700505 -817.040406
6 499.0 -886.639411 19.204203 -956.004474 -898.319677 -886.362851 -873.585164 -831.227083
8 439.0 -886.771852 18.936983 -935.404168 -900.759851 -888.298555 -873.989461 -819.988017
9 166.0 -875.682184 18.760039 -920.377910 -887.859687 -874.233890 -864.202902 -833.039203
10 468.0 -889.802760 19.740321 -940.281849 -903.157731 -890.244557 -876.323514 -839.329975
11 390.0 -889.543798 20.667989 -945.690371 -902.701796 -889.173510 -876.046579 -827.609107
36.0 6 745.0 -898.672030 17.722600 -944.592028 -911.162059 -899.124975 -887.156187 -838.921809
9 178.0 -887.958891 19.361262 -933.458611 -901.874268 -887.386495 -874.446654 -839.795967
10 751.0 -899.442786 18.264277 -948.574290 -911.876551 -899.434582 -887.730034 -842.397713
38.0 0 190.0 -887.070169 19.997046 -932.513527 -899.400700 -887.331952 -873.157369 -837.380043
1 803.0 -897.982131 18.899288 -948.417071 -910.692875 -898.353706 -884.968253 -845.413398
2 292.0 -884.828799 18.548164 -929.632641 -895.771273 -886.483368 -872.085254 -822.687180
3 284.0 -888.637338 17.777921 -935.713625 -900.609155 -888.930495 -875.283016 -841.905732
9 202.0 -888.994218 18.454132 -940.793974 -900.077167 -890.945484 -876.725354 -840.839724
40.0 0 332.0 -881.066871 18.798838 -931.016997 -894.962503 -880.563670 -868.173569 -824.507881
1 421.0 -884.327925 18.959000 -934.258436 -897.606460 -886.138082 -871.902673 -829.521160
2 433.0 -886.459083 18.767784 -937.516092 -899.308611 -886.358190 -874.860867 -837.242895
3 415.0 -886.970365 19.547075 -932.519441 -900.623635 -888.358786 -873.599376 -823.503081
6 266.0 -874.557970 18.951226 -920.341500 -886.050496 -874.460368 -862.144591 -811.120793
8 303.0 -885.330511 17.744929 -934.041834 -897.705181 -884.941002 -874.706651 -834.326246
... ... ... ... ... ... ... ... ... ...
66.0 0 121.0 -901.122000 18.884814 -950.234870 -914.512399 -900.147314 -891.314805 -847.123991
1 116.0 -895.673453 20.593193 -943.158672 -909.286231 -892.700447 -882.176605 -843.592094
2 122.0 -893.386943 16.639179 -940.563389 -903.356458 -890.835211 -882.714439 -860.893218
5 146.0 -892.489449 18.084460 -939.473970 -903.558047 -892.728915 -881.652826 -829.790894
9 113.0 -900.106981 19.429993 -947.721683 -913.266159 -901.885025 -886.696900 -849.944626
68.0 2 114.0 -900.485431 18.094734 -955.734272 -911.996865 -900.974327 -892.588273 -840.315608
4 117.0 -899.122680 18.390827 -937.082189 -912.868173 -897.244308 -887.730809 -849.170993
5 122.0 -899.202206 18.096502 -942.277956 -912.256825 -899.429781 -886.356515 -849.526101
6 108.0 -899.350525 19.895123 -948.184033 -912.749381 -900.136850 -887.966586 -852.250856
70.0 0 128.0 -894.078248 19.151928 -932.680240 -906.530740 -893.622555 -882.169923 -845.602397
1 116.0 -892.546498 19.361662 -941.066566 -905.893757 -890.558962 -878.897157 -854.799927
2 102.0 -886.921617 19.749254 -931.882107 -899.941331 -886.186594 -874.562656 -839.546481
4 117.0 -900.586853 15.987925 -931.885593 -911.162284 -900.690096 -891.125473 -843.020882
6 151.0 -897.635438 19.035434 -948.544722 -910.327936 -898.369543 -884.971073 -850.162537
9 144.0 -899.479657 18.821801 -961.859476 -910.614437 -899.454667 -887.326860 -836.591334
11 129.0 -896.937018 18.231441 -931.164155 -912.345856 -898.066799 -882.549609 -854.551788
72.0 5 843.0 -889.735359 18.385546 -945.165975 -901.767226 -889.610041 -876.941197 -834.454650
7 887.0 -890.804077 19.030764 -950.500121 -903.870195 -890.725187 -878.413063 -825.277069
74.0 2 563.0 -889.161729 19.215481 -945.370722 -901.770235 -888.700659 -876.424557 -820.053293
4 486.0 -891.617002 18.427406 -942.722054 -903.735952 -891.787370 -879.126522 -821.591513
9 260.0 -876.031653 18.858182 -933.126162 -889.470288 -876.422794 -862.308188 -799.717821
10 573.0 -892.888059 20.179539 -966.404766 -907.757438 -893.599110 -879.050420 -830.427500
76.0 0 177.0 -899.930496 17.860655 -951.523665 -911.374667 -899.719720 -887.991498 -849.665731
1 172.0 -898.798099 16.600835 -936.725827 -909.445908 -901.499495 -887.709274 -857.098197
4 258.0 -889.555351 19.880130 -946.994701 -902.343378 -888.851546 -875.051645 -841.475881
5 120.0 -898.296793 20.845806 -947.423702 -911.565177 -899.877191 -883.328435 -841.984704
9 261.0 -888.241465 18.550261 -947.615076 -901.440237 -889.035516 -877.595380 -836.922891
78.0 8 986.0 -889.553024 19.162510 -943.750324 -902.323468 -889.685562 -875.594160 -832.961716
82.0 5 109.0 -875.688598 23.427553 -934.032782 -892.162279 -874.180832 -858.468330 -823.612029
84.0 0 131.0 -881.062538 20.784376 -922.191985 -896.345220 -881.796198 -868.651078 -825.547022

119 rows × 8 columns


In [205]:
t = data.query("Temp == 300 and z_h6 > -10 and Qw < 0.6 and DisReal < 60")
t.groupby(["BiasTo", "Run"])["Qw"].describe().query("count > 100")


Out[205]:
count mean std min 25% 50% 75% max
BiasTo Run
30.0 0 394.0 0.489531 0.043844 0.358303 0.461404 0.492923 0.520311 0.594439
3 620.0 0.485340 0.029477 0.408019 0.466635 0.484666 0.505224 0.578709
5 114.0 0.444789 0.047450 0.344071 0.408037 0.429610 0.479605 0.575462
7 332.0 0.524273 0.028805 0.454118 0.505165 0.523628 0.544429 0.598160
8 588.0 0.488453 0.031958 0.389779 0.464817 0.488286 0.510258 0.579697
32.0 3 632.0 0.487750 0.030249 0.410464 0.467053 0.487285 0.507899 0.585787
6 194.0 0.521501 0.028685 0.441429 0.500648 0.521954 0.539422 0.589675
9 558.0 0.486652 0.027890 0.405111 0.468676 0.486566 0.504700 0.576786
10 157.0 0.522495 0.031685 0.437480 0.504383 0.519569 0.541603 0.595622
34.0 0 303.0 0.488812 0.028451 0.418062 0.468822 0.487874 0.509373 0.565705
5 206.0 0.443994 0.035986 0.322582 0.427907 0.446196 0.465365 0.543804
6 499.0 0.522046 0.029040 0.428436 0.503733 0.523642 0.541547 0.588953
8 439.0 0.524791 0.029219 0.430359 0.505522 0.526952 0.545704 0.594427
9 166.0 0.496579 0.026986 0.408038 0.480445 0.496830 0.514039 0.578228
10 468.0 0.413349 0.022430 0.344875 0.399962 0.413567 0.427569 0.482350
11 390.0 0.410743 0.022368 0.350805 0.396504 0.408812 0.424746 0.482739
36.0 6 745.0 0.483690 0.030461 0.394670 0.463188 0.482566 0.503314 0.585620
9 178.0 0.414196 0.020174 0.364020 0.401110 0.413120 0.428199 0.467040
10 751.0 0.484260 0.030414 0.404256 0.463737 0.483324 0.504644 0.582029
38.0 0 190.0 0.408572 0.024124 0.338022 0.391332 0.406393 0.424663 0.472623
1 803.0 0.481138 0.030067 0.398346 0.460458 0.480804 0.501786 0.571299
2 292.0 0.520303 0.028539 0.445324 0.500611 0.520745 0.542394 0.587540
3 284.0 0.423729 0.041731 0.363189 0.396241 0.413268 0.431222 0.575946
9 202.0 0.415782 0.022594 0.363667 0.400491 0.415146 0.429986 0.500137
40.0 0 332.0 0.442155 0.023612 0.370792 0.426444 0.444496 0.456481 0.507021
1 421.0 0.518245 0.030308 0.421739 0.499133 0.519452 0.538511 0.591126
2 433.0 0.407968 0.022324 0.351707 0.392262 0.407573 0.422140 0.473064
3 415.0 0.411648 0.021136 0.323997 0.398344 0.410570 0.425364 0.472014
6 266.0 0.351914 0.017503 0.300588 0.341483 0.352147 0.361913 0.418239
8 303.0 0.443511 0.021982 0.363102 0.428339 0.443220 0.459870 0.503529
... ... ... ... ... ... ... ... ... ...
66.0 0 121.0 0.575636 0.017451 0.524251 0.560832 0.577432 0.591042 0.599985
1 116.0 0.577491 0.021303 0.495074 0.569036 0.584397 0.592174 0.599894
2 122.0 0.467920 0.031502 0.386007 0.445745 0.470909 0.490302 0.548944
5 146.0 0.467205 0.025945 0.404986 0.451272 0.465407 0.485017 0.535565
9 113.0 0.579406 0.016709 0.511979 0.570995 0.583537 0.590994 0.599611
68.0 2 114.0 0.576348 0.019013 0.507565 0.564166 0.581423 0.591033 0.599923
4 117.0 0.580757 0.017576 0.521178 0.572045 0.586170 0.594763 0.599066
5 122.0 0.574987 0.018805 0.529303 0.564137 0.578293 0.591018 0.599944
6 108.0 0.580065 0.015938 0.539403 0.571373 0.582882 0.592905 0.599633
70.0 0 128.0 0.462869 0.026190 0.395824 0.447547 0.460828 0.479186 0.534200
1 116.0 0.466758 0.026348 0.388508 0.450535 0.467621 0.483546 0.525900
2 102.0 0.464029 0.027526 0.391007 0.447468 0.463903 0.481800 0.542475
4 117.0 0.575161 0.021442 0.482658 0.565996 0.579825 0.591280 0.599993
6 151.0 0.577447 0.017979 0.519017 0.565755 0.581196 0.592861 0.599645
9 144.0 0.576912 0.019614 0.518649 0.567711 0.582269 0.592874 0.599916
11 129.0 0.580298 0.017659 0.505153 0.572408 0.586535 0.592519 0.599641
72.0 5 843.0 0.464094 0.025547 0.389147 0.446118 0.463628 0.481530 0.543629
7 887.0 0.467385 0.027932 0.393338 0.448422 0.466138 0.485082 0.568665
74.0 2 563.0 0.466495 0.026990 0.401119 0.449493 0.464952 0.483591 0.561554
4 486.0 0.466071 0.028482 0.375480 0.447966 0.466290 0.483575 0.550493
9 260.0 0.496669 0.028378 0.404756 0.478535 0.496790 0.515455 0.580669
10 573.0 0.470901 0.028174 0.383592 0.452267 0.470268 0.488985 0.579701
76.0 0 177.0 0.577569 0.020088 0.503613 0.564750 0.583074 0.593591 0.599979
1 172.0 0.576932 0.018177 0.516327 0.566479 0.579116 0.592593 0.599804
4 258.0 0.461957 0.085142 0.345313 0.394413 0.419904 0.569953 0.599947
5 120.0 0.579387 0.015364 0.531898 0.570654 0.582667 0.591257 0.599300
9 261.0 0.465503 0.026522 0.393174 0.449805 0.465494 0.483787 0.533802
78.0 8 986.0 0.463921 0.027725 0.365707 0.444712 0.463058 0.482697 0.557890
82.0 5 109.0 0.422596 0.086911 0.280349 0.363041 0.388452 0.430845 0.597187
84.0 0 131.0 0.425814 0.070791 0.274786 0.387266 0.447998 0.476494 0.558342

119 rows × 8 columns


In [197]:
data.query("Temp == 300 and z_h6 > -10 and Qw > 0.3 and DisReal < 60")["Qw"].hist(bins=50)
data.query("Temp == 300 and z_h6 > -10 and Qw > 0.3 and DisReal < 60")["Qw"].mean()


Out[197]:
0.5200406120854402

In [ ]:
t = data.query("Temp == 300 and z_h6 < -10 and Qw > 0.3")
t.groupby(["BiasTo", "Run"])["Qw"].describe().query("count > 100")

In [149]:
t = data.query("Temp == 300 and z_h6 < -10 and Qw > 0.3")
t.groupby(["BiasTo", "Run"])["Qw"].describe().query("count > 100")


Out[149]:
count mean std min 25% 50% 75% max
BiasTo Run
100.0 10 156.0 0.401507 0.029608 0.315298 0.384423 0.401515 0.419898 0.469629
72.0 1 256.0 0.377285 0.022454 0.301294 0.363600 0.377906 0.393576 0.439035
78.0 7 164.0 0.449923 0.035584 0.345792 0.427605 0.446752 0.475710 0.532827
80.0 0 162.0 0.446442 0.032028 0.354827 0.430338 0.449124 0.465840 0.529778
5 229.0 0.448336 0.035905 0.327640 0.422755 0.448652 0.473249 0.536800
11 358.0 0.460356 0.033694 0.369025 0.437515 0.459280 0.483573 0.570592
82.0 2 107.0 0.450985 0.039338 0.364041 0.420962 0.451839 0.477923 0.568188
84.0 8 734.0 0.367220 0.022367 0.306020 0.351989 0.367830 0.383073 0.427086
86.0 6 189.0 0.359501 0.025159 0.310352 0.342112 0.359164 0.375743 0.425219
88.0 2 316.0 0.357779 0.024044 0.301202 0.341398 0.357336 0.373844 0.431721
4 507.0 0.445021 0.036512 0.335681 0.419464 0.446287 0.471036 0.558018
5 481.0 0.443088 0.034372 0.339516 0.420437 0.440849 0.468509 0.547236
8 191.0 0.362609 0.022720 0.307835 0.348507 0.363370 0.380009 0.418722
92.0 7 181.0 0.318419 0.017204 0.300058 0.305806 0.313089 0.327235 0.380311
10 113.0 0.378277 0.052080 0.300115 0.332064 0.378333 0.423989 0.472322
96.0 3 109.0 0.313523 0.010522 0.300059 0.305449 0.312272 0.319603 0.346076
7 854.0 0.334134 0.017192 0.300080 0.321745 0.333039 0.345030 0.404080
98.0 1 488.0 0.334744 0.019960 0.300052 0.320059 0.333613 0.347594 0.409914
6 574.0 0.337025 0.019014 0.300169 0.324376 0.335988 0.349475 0.407215
7 423.0 0.400406 0.031782 0.312027 0.377341 0.402923 0.421179 0.500205
9 311.0 0.338310 0.021854 0.300088 0.320835 0.335578 0.354701 0.404305

In [145]:
data.query("Temp == 300 and z_h6 < -10 and Qw > 0.3").plot.hexbin("z_h4", "Qw", cmap="seismic", sharex=False)


Out[145]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a191c06a0>

In [6]:
t = data.query("Temp < 350 and DisReal > 60 and Qw > 0.18")
t.hist("Lipid1")


Out[6]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1a21e912e8>]], dtype=object)

In [9]:
data.query("Temp < 350").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[9]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a21e913c8>

In [20]:
rerun7.query("Temp < 350")["Step"].count()


Out[20]:
540000

In [17]:
t = rerun5.query("Temp < 350 and DisReal > 60 and Qw > 0.18 and Lipid1 > -1")
t["Step"].count()


Out[17]:
53939

In [18]:
t = rerun7.query("Temp < 350 and DisReal > 60 and Qw > 0.18 and Lipid1 > -1")
t["Step"].count()


Out[18]:
52305

In [10]:
t = data.query("Temp < 350 and DisReal > 60 and Qw > 0.18 and Lipid1 > -1")
t.plot.hexbin("Lipid1", "z_h1", cmap="seismic", sharex=False)


Out[10]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a215447b8>

In [283]:
data.query("Temp < 350 and DisReal > 60 and Qw > 0.18").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[283]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a59b3e198>

In [277]:
data.query("Qw > 0.58").groupby("Temp")["DisReal"].describe()


Out[277]:
count mean std min 25% 50% 75% max
Temp
280 34395.0 42.940793 5.531507 24.547152 38.811300 42.836657 47.382027 59.594937
290 22489.0 42.784274 5.330718 21.744802 38.877496 42.851639 46.927034 57.014944
300 11801.0 43.579822 5.151529 25.652358 39.889707 44.021430 47.580846 58.152470
310 5845.0 44.908710 4.777508 27.114228 41.968282 45.678484 48.428579 55.947778
320 2639.0 45.515907 4.648256 26.487897 42.868365 46.234237 48.820234 56.778925
335 574.0 45.595006 4.176323 31.826684 42.863389 46.208786 48.586064 54.507667
350 82.0 45.239074 4.337481 32.754204 42.069960 46.152603 48.677832 52.897284
365 5.0 46.504712 3.444580 41.733659 45.157007 46.514402 48.106523 51.011969

In [220]:
t = data.query("z_h6 < -20 and Qw > 0.25 and Qw < 0.35 and DisReal > 60")
t.groupby(["BiasTo", "Run"])["DisReal"].describe().query("count > 100")


Out[220]:
count mean std min 25% 50% 75% max
BiasTo Run
60.0 5 113.0 66.512154 3.886832 60.147610 63.580878 66.285957 69.405557 77.179416
68.0 11 180.0 73.756180 6.057438 60.749281 69.398390 73.617739 77.737753 92.431294
70.0 0 469.0 74.191685 5.318893 60.414137 70.405310 74.056265 78.122878 89.513138
74.0 2 101.0 76.827775 5.457357 66.320898 72.989188 76.996523 80.230168 89.134214
11 144.0 75.486415 4.963238 62.432900 71.845102 74.953984 79.007245 87.323786
76.0 3 235.0 78.447992 5.253855 66.259977 74.608759 78.511404 81.494020 95.362849
80.0 5 217.0 79.799922 4.855510 67.250980 76.633111 80.259033 83.007123 96.753831
11 198.0 79.955361 5.238624 65.716158 76.483398 80.330906 83.365813 93.809286
82.0 3 114.0 82.243958 3.904281 72.643975 79.513151 81.941932 85.159661 91.372623
84.0 6 416.0 85.558974 4.732438 70.555359 82.467007 85.292550 88.945509 98.381981
8 415.0 86.876651 6.218563 70.161543 82.480690 87.035292 91.161424 104.109995
86.0 6 199.0 91.192025 5.494117 75.331115 88.039038 91.072395 94.250562 106.096975
88.0 2 262.0 90.216668 5.130045 75.261177 86.876216 90.352033 93.509445 104.125687
5 351.0 87.891460 5.725054 73.764376 83.802720 87.646519 91.993305 105.204918
92.0 2 542.0 89.927684 5.273472 70.467923 86.323840 89.760363 93.542206 105.406497
94.0 1 106.0 90.242444 6.574085 77.091854 84.989310 90.004269 95.004842 106.691579
96.0 7 812.0 96.576466 5.142513 79.397742 93.199597 96.335172 100.062148 110.993673
98.0 1 818.0 97.598809 4.302016 86.262144 94.911896 97.646100 100.322980 112.100967
6 441.0 97.337894 5.101396 81.527405 94.271081 97.383584 100.831160 109.210235

In [216]:
data.query("z_h6 < -20 and Qw > 0.25 and Qw < 0.35 and DisReal > 60").plot.hexbin("z_h4", "TotalE", cmap="seismic", sharex=False)


Out[216]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a4b46f390>

In [196]:
data.query("z_h6 < -20 and Qw > 0.25 and Qw < 0.35").hist("DisReal", bins=50)


Out[196]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1a4a99ada0>]], dtype=object)

In [193]:
data.query("z_h6 < -20 and Qw > 0.25 and Qw < 0.35").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[193]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a4a625cc0>

In [40]:
data.query("Temp == 300").plot.hexbin("z_h3", "z_h6", cmap="seismic", sharex=False)


Out[40]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a3ca9f828>

In [42]:
a = data.query("(z_h3 < -10) or (z_h6 < -10)")
a.query("Temp == 300").plot.hexbin("z_h3", "z_h6", cmap="seismic", sharex=False)


Out[42]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a299f2588>

In [66]:
data.columns


Out[66]:
Index(['Step', 'Run', 'Temp', 'Qw', 'Energy', 'DisReal', 'z_average',
       'abs_z_average', 'z_h1', 'z_h2', 'z_h3', 'z_h4', 'z_h5', 'z_h6',
       'Distance', 'AMH-Go', 'Membrane', 'Rg', 'rg1', 'rg2', 'rg3', 'rg4',
       'rg5', 'rg6', 'rg_all', 'Lipid', 'Lipid1', 'Lipid2', 'Lipid3', 'Lipid4',
       'Lipid5', 'Lipid6', 'Lipid7', 'Lipid8', 'Lipid9', 'Lipid10', 'Lipid11',
       'Lipid12', 'Lipid13', 'Lipid14', 'Lipid15', 'TotalE', 'BiasTo'],
      dtype='object')

In [88]:
data.query("Temp <= 300").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[88]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a43e3fd30>

In [87]:
data.query("Temp <= 300 and DisReal > 60").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[87]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a259706d8>

In [91]:
data.columns


Out[91]:
Index(['Step', 'Run', 'Temp', 'Qw', 'Energy', 'DisReal', 'z_average',
       'abs_z_average', 'z_h1', 'z_h2', 'z_h3', 'z_h4', 'z_h5', 'z_h6',
       'Distance', 'AMH-Go', 'Membrane', 'Rg', 'rg1', 'rg2', 'rg3', 'rg4',
       'rg5', 'rg6', 'rg_all', 'Lipid', 'Lipid1', 'Lipid2', 'Lipid3', 'Lipid4',
       'Lipid5', 'Lipid6', 'Lipid7', 'Lipid8', 'Lipid9', 'Lipid10', 'Lipid11',
       'Lipid12', 'Lipid13', 'Lipid14', 'Lipid15', 'TotalE', 'BiasTo'],
      dtype='object')

In [94]:
data.query("Temp == 300 and DisReal > 60").plot.hexbin("Lipid1", "Qw", cmap="seismic", sharex=False)


Out[94]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a431b42b0>

In [96]:
data.query("Temp == 300").plot.hexbin("abs_z_average", "z_h6", cmap="seismic", sharex=False)


Out[96]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a435ea860>

In [126]:
data.query("Temp == 300 and Qw < 0.6 and DisReal > 60 and Lipid1 > -1").plot.hexbin("abs_z_average", "Qw", cmap="seismic", sharex=False)


Out[126]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a25a95b38>

In [130]:
data.query("Temp == 300 and Qw < 0.6 and DisReal > 60").shape


Out[130]:
(35124, 43)

In [129]:
t = data.query("Temp == 300 and Qw < 0.6 and DisReal > 60 and Lipid1 > -1")
print(t.shape)
t.groupby(["BiasTo", "Run"])["DisReal"].describe().query("count > 500")


(11439, 43)
Out[129]:
count mean std min 25% 50% 75% max
BiasTo Run
72.0 8 538.0 77.631154 4.978481 64.034331 74.265102 77.679578 81.148599 92.402795
74.0 5 671.0 79.352226 4.992393 64.103251 75.905704 79.439485 82.716725 94.980508
8 597.0 80.370943 4.771834 63.743749 77.312220 80.329319 83.590274 94.733364
76.0 2 609.0 82.491103 4.934288 66.209328 79.096101 82.395038 85.988688 95.370163
80.0 7 570.0 84.330678 4.942327 65.585395 81.343990 84.503898 87.671476 98.049908
8 583.0 84.765906 4.744009 71.252220 81.699702 84.902951 87.689288 99.617263
82.0 7 591.0 86.381836 4.886817 74.129515 82.791748 86.400281 89.636735 101.037585
9 515.0 86.697468 4.841471 71.817455 83.436906 86.703616 90.212749 101.873019
88.0 1 503.0 91.928638 4.759968 75.885403 88.872399 91.672946 95.171128 105.171102
90.0 11 817.0 92.899936 4.619934 79.678197 89.964819 92.984239 95.992677 107.310590
98.0 10 540.0 98.684912 4.785347 85.058600 95.322567 98.759484 102.196297 111.325873

In [128]:
t = data.query("Temp == 300 and Qw < 0.6 and DisReal > 60 and z_h6 < -10")
print(t.shape)
t.groupby(["BiasTo", "Run"])["DisReal"].describe().query("count > 500")


(15583, 43)
Out[128]:
count mean std min 25% 50% 75% max
BiasTo Run
100.0 11 544.0 84.293570 3.425672 75.519237 81.961637 84.397217 86.622628 94.611569
72.0 5 548.0 73.933853 4.387406 61.049616 71.126700 74.101592 77.014725 86.079380
6 570.0 77.566640 4.805078 63.593634 74.509323 77.478254 80.691643 92.106523
78.0 5 520.0 82.549008 4.721425 70.541042 79.102200 82.721582 85.779293 95.670568
10 540.0 82.675814 4.635266 68.840841 79.520502 82.781726 85.958293 96.702022
80.0 0 568.0 79.695028 4.399605 67.366476 76.710162 79.807395 82.590351 96.141058
84.0 8 530.0 83.894069 5.306648 70.917908 80.118754 83.161541 87.110482 100.301417
11 553.0 86.657368 4.707773 73.011489 83.747428 86.888678 89.551823 100.057218
86.0 11 531.0 87.787863 4.444919 76.416774 84.737965 87.608177 90.635270 102.053831
88.0 2 595.0 84.620395 4.761268 70.773094 81.346685 84.557121 87.582304 98.051481
92.0 2 564.0 91.000057 5.468401 78.150078 87.060316 90.448845 94.965484 108.250962
96.0 7 963.0 95.072311 5.525327 77.822069 91.490362 94.993429 98.830402 110.993673

In [125]:
data.query("Temp == 300 and Qw < 0.6 and DisReal > 60 and z_h6 < -10").plot.hexbin("abs_z_average", "Qw", cmap="seismic", sharex=False)


Out[125]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a43fc2908>

In [124]:
data.query("Temp == 300 and Qw < 0.6 and DisReal > 60").plot.hexbin("abs_z_average", "Qw", cmap="seismic", sharex=False)


Out[124]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a44fa2fd0>

In [120]:
t = data.query("Temp == 300 and Qw < 0.6 and Lipid1 < -1 and DisReal < 60")
t.groupby(["BiasTo", "Run"])["DisReal"].describe().query("count > 500")


Out[120]:
count mean std min 25% 50% 75% max
BiasTo Run
30.0 11 501.0 34.550022 3.497956 24.170195 32.341842 34.733842 36.927544 44.118947
32.0 8 523.0 35.867688 3.378665 24.100050 33.797883 35.808496 38.302579 45.959715
10 645.0 36.086853 2.985883 26.805858 34.255239 35.990810 38.118236 47.008506
34.0 6 514.0 32.001355 3.933645 19.487454 29.375800 32.185595 34.763219 43.226268
36.0 6 683.0 36.538337 3.075776 26.712718 34.600427 36.581137 38.632251 45.696680
9 535.0 37.053009 3.487852 27.163052 34.778089 36.952146 39.300564 46.858792
10 599.0 36.493984 3.050589 28.673133 34.313042 36.475634 38.632653 45.187989
38.0 0 542.0 38.292865 3.117689 29.507186 36.509181 38.429570 40.372452 47.251375
1 714.0 37.156266 3.051513 27.119173 35.145635 37.288075 39.339564 46.587213
2 646.0 38.042212 2.957526 29.438891 36.105246 37.955290 40.029292 47.525100
42.0 6 707.0 38.366364 2.976499 28.001329 36.458438 38.554256 40.285623 47.530492
9 636.0 38.318101 2.830133 30.080318 36.520623 38.279709 40.229305 45.076937
44.0 7 653.0 39.187825 2.832088 31.375651 37.427158 39.179752 41.124606 47.085678
46.0 5 582.0 39.461132 2.802785 29.656917 37.685658 39.756264 41.339765 46.331141
9 592.0 39.515688 2.656214 31.390946 37.743350 39.514984 41.435002 46.551716
48.0 2 532.0 39.997772 2.763595 32.714515 38.160923 40.078110 41.975311 47.424742
5 617.0 40.078830 2.917347 30.190290 38.052028 40.208077 42.158398 49.065847
50.0 4 572.0 40.516251 2.894581 29.218862 38.590035 40.625680 42.319545 49.911833
6 579.0 40.452561 2.723055 31.306359 38.851076 40.420034 42.158544 47.852737
52.0 6 585.0 42.891324 3.309122 34.838188 40.494285 42.791672 45.103617 53.407546
54.0 3 593.0 43.652043 3.418296 34.941781 41.392058 43.590167 45.989911 55.849975
8 504.0 43.468905 3.307635 33.128995 41.161186 43.479570 45.611239 52.045254
56.0 1 557.0 44.201995 3.411782 33.753458 41.816051 44.090526 46.363673 54.841648
7 542.0 44.164520 3.429523 32.235866 41.796897 44.247860 46.500655 55.349855
58.0 7 824.0 42.481098 2.637412 33.582897 40.764434 42.498365 44.173776 50.799169
60.0 8 608.0 42.638195 2.560345 34.202688 40.911645 42.578285 44.345535 49.555813
10 543.0 42.848207 2.621652 34.645227 41.066412 42.700465 44.606472 51.479163
62.0 0 597.0 43.277374 2.653459 32.995607 41.460755 43.142450 45.150519 53.672116
7 634.0 43.225784 2.627363 35.509930 41.493669 43.174808 45.023711 50.970356
9 684.0 43.219135 2.749727 34.961009 41.375080 43.101129 44.931003 53.977729
64.0 7 666.0 47.337949 2.991526 37.048099 45.439008 47.615525 49.520250 54.931101
10 588.0 46.540005 3.096186 38.317320 44.321463 46.640451 48.617557 54.942772
68.0 4 590.0 44.379569 2.656873 36.506250 42.625571 44.344091 46.021600 53.099925
70.0 1 678.0 45.143000 2.616832 36.997997 43.303478 45.142127 46.904454 53.147709
11 679.0 45.274321 2.628822 36.256916 43.455996 45.276506 47.127284 53.834286
74.0 1 549.0 50.903293 3.274476 40.958378 48.939727 50.828384 53.000226 59.523403
76.0 0 522.0 51.331612 3.403327 42.337286 49.037508 51.416541 53.997385 59.633690
4 526.0 51.618093 3.490510 40.795565 49.258330 51.623358 53.998894 59.458026

In [114]:
data.query("Temp == 300 and Qw < 0.6 and Lipid1 < -1 and DisReal < 60").plot.hexbin("z_h1", "Qw", cmap="seismic", sharex=False)


Out[114]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a4573e7b8>

In [85]:
data.query("Temp <= 300 and DisReal > 60").plot.hexbin("abs_z_average", "Qw", cmap="seismic", sharex=False)


Out[85]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a4631c438>

In [64]:
data.query("Temp == 300").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[64]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a471194e0>

In [34]:
a = data.query("(z_h6 > -10 and z_h1 < -10) or (z_h6 < -10 and z_h1 > -10)")

In [ ]:


In [35]:
a.query("Temp == 300").plot.hexbin("z_h1", "z_h6", cmap="seismic", sharex=False)


Out[35]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a22079908>

I hope we don't see this, for rerun 3.

(h6 inside, h1 outside)


In [59]:
rerun1.query("Temp <= 300 and z_h1 < -10")["DisReal"].count()


Out[59]:
23027

In [60]:
rerun1.query("Temp <= 300 and z_h1 < -10").plot.hexbin("DisReal", "z_h6", cmap="seismic", sharex=False)


Out[60]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a44ad06d8>

In [300]:
rerun5.query("Temp <= 300 and z_h1 < -10").plot.hexbin("DisReal", "z_h6", cmap="seismic", sharex=False)


Out[300]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a4c006d30>

In [7]:
data.query("Temp <= 300 and z_h1 < -10").plot.hexbin("DisReal", "z_h6", cmap="seismic", sharex=False)


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a5239eb70>

Good, decrease in number


In [61]:
data.query("Temp <= 300")["DisReal"].count()


Out[61]:
270000

In [62]:
data.query("Temp <= 300 and z_h1 < -10")["DisReal"].describe()


Out[62]:
count    15664.000000
mean        86.338072
std         16.724329
min         23.835159
25%         84.224392
50%         91.396990
75%         96.274063
max        115.018263
Name: DisReal, dtype: float64

In [63]:
data.query("Temp <= 300 and z_h1 < -10").plot.hexbin("DisReal", "z_h6", cmap="seismic", sharex=False)


Out[63]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a42dd2e10>

enhance h1, h2 connection.

check if it increase the unfolding force, and if the helix 5,6 unfold first. (how strong h1,h2 bond needs to be)


In [27]:
data = pd.read_feather("/Users/weilu/Research/server/mar_2018/05_week/unfold_strengthen_h1_h2/03_Apr_233639.feather")

In [76]:
data.query("Steps < 4e7 and Qw > 0.1").plot.hexbin("Steps", "Qw", by="Temp", cmap="cool", sharex=False)


Out[76]:
<matplotlib.axes._subplots.AxesSubplot at 0x10d9f6cc0>

In [16]:
data.query("Folder == 'force_3_' and Steps < 3e7 and Qw > 0.1").plot.hexbin("Steps", "Qw", by="Temp", cmap="cool", sharex=False)


Out[16]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a4d733a20>

In [28]:
data["Run"] = data["Run"].apply(pd.to_numeric)

In [29]:
fg = sns.FacetGrid(data=data.query("Steps < 4e7 and Qw > 0.1 and Folder=='force_6_' and Run ==0"), hue='Run', size=8, aspect=1.61)
fg.map(plt.scatter, 'Steps', 'Qw').add_legend()


Out[29]:
<seaborn.axisgrid.FacetGrid at 0x1a2f93b128>

In [77]:
fg = sns.FacetGrid(data=data.query("Steps < 4e7 and Qw > 0.1"), hue='Folder', size=8, aspect=1.61)
fg.map(plt.scatter, 'Steps', 'Qw').add_legend()


Out[77]:
<seaborn.axisgrid.FacetGrid at 0x1a4ff850f0>

In [79]:
a = data.query("(z_h6 > -10 and z_h1 < -10) or (z_h6 < -10 and z_h1 > -10)")

In [80]:
a.query("Folder == 'force_6_'").plot.hexbin("z_h1", "z_h6", cmap="cool", sharex=False)


Out[80]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a23c9e198>

In [15]:
data["Folder"].unique()


Out[15]:
array(['force_2_mem_1.0_', 'force_1_mem_1.0_', 'force_3_',
       'force_2_mem_0.8_', 'force_1_mem_0.8_', 'force_4_'], dtype=object)

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]: