Thermochemical Properties of Gas
This folder contains a combined set of data for thermochemical properties of gas. Data is obtained from different source. Please use at your own risk.
- Capitelli: Collision integrals calculated by Capitelli et al. (Deprecated)
- Collision_Integral: Collision integrals obtained from different source.
- JsonData: Data in json format. The data itself is quite self-explanatory.
- RawData: Raw data I obtained.
- Model:
- Capitelli A1/A2: Check the original paper
$$ \begin{align}
\sigma^2 {\bar{\Omega}_{ij}^{(l,s)}}^{*} &= \dfrac{a_1+a_2 T^{a_3}}{a_4+a_5 T^{a_6}} \\
\sigma^2 {\bar{\Omega}_{ij}^{(l,s)}}^{*} &= \text{RHS of A2 in the paper}
\end{align}$$
- GuptaYos: Check the NASA report
$$\begin{align}
\pi\sigma^2 {\bar{\Omega}_{ij}^{(1,1)}}^{*} = \pi \bar{\Omega}_{ij}^{(1,1)} & = [\exp(D_{\bar{\Omega}_{ij}^{(1,1)}})]\cdot T^{\left[\displaystyle A_{\bar{\Omega}_{ij}^{(1,1)}} (\ln T)^2 + B_{\bar{\Omega}_{ij}^{(1,1)}} \ln T + C_{\bar{\Omega}_{ij}^{(1,1)}}\right]} \\
\pi \sigma^2 {\bar{\Omega}_{ij}^{(2,2)}}^{*} = \pi \bar{\Omega}_{ij}^{(2,2)} & = [\exp(D_{\bar{\Omega}_{ij}^{(2,2)}})]\cdot T^{\left[\displaystyle A_{\bar{\Omega}_{ij}^{(2,2)}} (\ln T)^2 + B_{\bar{\Omega}_{ij}^{(2,2)}} \ln T + C_{\bar{\Omega}_{ij}^{(2,2)}}\right]} \\
{B_{ij}^*} & = [\exp(C_{{B_{ij}^*}})]\cdot T^{\left[\displaystyle A_{{B_{ij}^*}} \ln T+ B_{B_{ij}^*} \right]} \\
\end{align}$$
- GuptaYos2:
$$\begin{align}
\pi \bar{\Omega}_{ij}^{(1,1)} & = D_{\bar{\Omega}_{ij}^{(1,1)}}\cdot T^{\left[\displaystyle A_{\bar{\Omega}_{ij}^{(1,1)}} (\ln T)^2 + B_{\bar{\Omega}_{ij}^{(1,1)}} \ln T + C_{\bar{\Omega}_{ij}^{(1,1)}}\right]} \\
\pi \bar{\Omega}_{ij}^{(2,2)} & = D_{\bar{\Omega}_{ij}^{(2,2)}}\cdot T^{\left[\displaystyle A_{\bar{\Omega}_{ij}^{(2,2)}} (\ln T)^2 + B_{\bar{\Omega}_{ij}^{(2,2)}} \ln T + C_{\bar{\Omega}_{ij}^{(2,2)}}\right]} \\
{B_{ij}^*} & = C_{{B_{ij}^*}}\cdot T^{\left[\displaystyle A_{{B_{ij}^*}} \ln T+ B_{B_{ij}^*} \right]} \\
\end{align}$$
- Unit: ${\bar{\Omega}_{ij}^{(l,s)}}^{*}$ is unitless, $\bar{\Omega}_{ij}^{(l,s)}$ is in Angstrom$^2$
- Bonus: First principle calculations:
$$\begin{gather}
Q^{(l)}(E_t) = 2\pi \int_{0}^{+\infty} (1-\cos^l \chi ) b \mathrm{d} b \\
\pi \sigma^2 {\Omega ^{(l,s)*}}(T) = \dfrac{4(l+1)}{(s+1)![2l+1-(-1)^l]}\int_0^\infty Q^{(l)}(E_t) {\gamma ^{2s}} \times {e^{ - {\gamma ^2}}}{\gamma ^3}\mathrm{d}\gamma, \quad \dfrac{E_t}{kT} = \gamma^2
\end{gather}$$
- Lewis: Lewis table, which is used to calculate thermodynamic properties. Check NASA Report NASA/TP—2002-211556 to learn how it works
- Molecule_Properties: Properties of molecules like mass, charge, electronic_levels and etc. The json data is converted from Eilmer3's lua table. All credit goes to Daniel F. Potter's hard work!