In [ ]:

Thermochemical Properties of Gas

This folder contains a combined set of data for thermochemical properties of gas. Data is obtained from different source. Please use at your own risk.

  1. Capitelli: Collision integrals calculated by Capitelli et al. (Deprecated)
  2. Collision_Integral: Collision integrals obtained from different source.
    • JsonData: Data in json format. The data itself is quite self-explanatory.
    • RawData: Raw data I obtained.
    • Model:
      • Capitelli A1/A2: Check the original paper $$ \begin{align} \sigma^2 {\bar{\Omega}_{ij}^{(l,s)}}^{*} &= \dfrac{a_1+a_2 T^{a_3}}{a_4+a_5 T^{a_6}} \\ \sigma^2 {\bar{\Omega}_{ij}^{(l,s)}}^{*} &= \text{RHS of A2 in the paper} \end{align}$$
      • GuptaYos: Check the NASA report $$\begin{align} \pi\sigma^2 {\bar{\Omega}_{ij}^{(1,1)}}^{*} = \pi \bar{\Omega}_{ij}^{(1,1)} & = [\exp(D_{\bar{\Omega}_{ij}^{(1,1)}})]\cdot T^{\left[\displaystyle A_{\bar{\Omega}_{ij}^{(1,1)}} (\ln T)^2 + B_{\bar{\Omega}_{ij}^{(1,1)}} \ln T + C_{\bar{\Omega}_{ij}^{(1,1)}}\right]} \\ \pi \sigma^2 {\bar{\Omega}_{ij}^{(2,2)}}^{*} = \pi \bar{\Omega}_{ij}^{(2,2)} & = [\exp(D_{\bar{\Omega}_{ij}^{(2,2)}})]\cdot T^{\left[\displaystyle A_{\bar{\Omega}_{ij}^{(2,2)}} (\ln T)^2 + B_{\bar{\Omega}_{ij}^{(2,2)}} \ln T + C_{\bar{\Omega}_{ij}^{(2,2)}}\right]} \\ {B_{ij}^*} & = [\exp(C_{{B_{ij}^*}})]\cdot T^{\left[\displaystyle A_{{B_{ij}^*}} \ln T+ B_{B_{ij}^*} \right]} \\ \end{align}$$
      • GuptaYos2: $$\begin{align} \pi \bar{\Omega}_{ij}^{(1,1)} & = D_{\bar{\Omega}_{ij}^{(1,1)}}\cdot T^{\left[\displaystyle A_{\bar{\Omega}_{ij}^{(1,1)}} (\ln T)^2 + B_{\bar{\Omega}_{ij}^{(1,1)}} \ln T + C_{\bar{\Omega}_{ij}^{(1,1)}}\right]} \\ \pi \bar{\Omega}_{ij}^{(2,2)} & = D_{\bar{\Omega}_{ij}^{(2,2)}}\cdot T^{\left[\displaystyle A_{\bar{\Omega}_{ij}^{(2,2)}} (\ln T)^2 + B_{\bar{\Omega}_{ij}^{(2,2)}} \ln T + C_{\bar{\Omega}_{ij}^{(2,2)}}\right]} \\ {B_{ij}^*} & = C_{{B_{ij}^*}}\cdot T^{\left[\displaystyle A_{{B_{ij}^*}} \ln T+ B_{B_{ij}^*} \right]} \\ \end{align}$$
      • Unit: ${\bar{\Omega}_{ij}^{(l,s)}}^{*}$ is unitless, $\bar{\Omega}_{ij}^{(l,s)}$ is in Angstrom$^2$
      • Bonus: First principle calculations: $$\begin{gather} Q^{(l)}(E_t) = 2\pi \int_{0}^{+\infty} (1-\cos^l \chi ) b \mathrm{d} b \\ \pi \sigma^2 {\Omega ^{(l,s)*}}(T) = \dfrac{4(l+1)}{(s+1)![2l+1-(-1)^l]}\int_0^\infty Q^{(l)}(E_t) {\gamma ^{2s}} \times {e^{ - {\gamma ^2}}}{\gamma ^3}\mathrm{d}\gamma, \quad \dfrac{E_t}{kT} = \gamma^2 \end{gather}$$
  3. Lewis: Lewis table, which is used to calculate thermodynamic properties. Check NASA Report NASA/TP—2002-211556 to learn how it works
  4. Molecule_Properties: Properties of molecules like mass, charge, electronic_levels and etc. The json data is converted from Eilmer3's lua table. All credit goes to Daniel F. Potter's hard work!

In [ ]: