Collection of Helpful Functions for Class

This is a collection of helpful functions that I will introduce during this class.


In [4]:
from sklearn import preprocessing
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

# Encode text values to dummy variables(i.e. [1,0,0],[0,1,0],[0,0,1] for red,green,blue)
def encode_text_dummy(df,name):
    dummies = pd.get_dummies(df[name])
    for x in dummies.columns:
        dummy_name = "{}-{}".format(name,x)
        df[dummy_name] = dummies[x]
    df.drop(name, axis=1, inplace=True)

# Encode text values to indexes(i.e. [1],[2],[3] for red,green,blue).
def encode_text_index(df,name):
    le = preprocessing.LabelEncoder()
    df[name] = le.fit_transform(df[name])
    return le.classes_

# Encode a numeric column as zscores
def encode_numeric_zscore(df,name,mean=None,sd=None):
    if mean is None:
        mean = df[name].mean()

    if sd is None:
        sd = df[name].std()

    df[name] = (df[name]-mean)/sd

# Convert all missing values in the specified column to the median
def missing_median(df, name):
    med = df[name].median()
    df[name] = df[name].fillna(med)

# Convert a Pandas dataframe to the x,y inputs that TensorFlow needs
def to_xy(df,target):
    result = []
    for x in df.columns:
        if x != target:
            result.append(x)

    # find out the type of the target column.  Is it really this hard? :(
    target_type = df[target].dtypes
    target_type = target_type[0] if hasattr(target_type, '__iter__') else target_type
    print(target_type)
    
    # Encode to int for classification, float otherwise. TensorFlow likes 32 bits.
    if target_type in (np.int64, np.int32):
        # Classification
        return df.as_matrix(result).astype(np.float32),df.as_matrix([target]).astype(np.int32)
    else:
        # Regression
        return df.as_matrix(result).astype(np.float32),df.as_matrix([target]).astype(np.float32)

# Nicely formatted time string
def hms_string(sec_elapsed):
    h = int(sec_elapsed / (60 * 60))
    m = int((sec_elapsed % (60 * 60)) / 60)
    s = sec_elapsed % 60
    return "{}:{:>02}:{:>05.2f}".format(h, m, s)

# Regression chart, we will see more of this chart in the next class.
def chart_regression(pred,y):
    t = pd.DataFrame({'pred' : pred.flatten(), 'y' : y_test.flatten()})
    t.sort_values(by=['y'],inplace=True)
    a = plt.plot(t['y'].tolist(),label='expected')
    b = plt.plot(t['pred'].tolist(),label='prediction')
    plt.ylabel('output')
    plt.legend()
    plt.show()