#Fire up GraphLab Create


In [5]:
import graphlab as gl
from pandas import Series, DataFrame
import pandas as pd

In [13]:
## Here pandas is working
df = pd.read_csv('people-example.csv')

## GraphLab 
sf = gl.SFrame('people-example.csv')
sf.show()


PROGRESS: Finished parsing file /home/zax/ml-foundation/people-example.csv
PROGRESS: Parsing completed. Parsed 7 lines in 0.038828 secs.
------------------------------------------------------
Inferred types from first line of file as 
column_type_hints=[str,str,str,int]
If parsing fails due to incorrect types, you can correct
the inferred type list above and pass it to read_csv in
the column_type_hints argument
------------------------------------------------------
PROGRESS: Finished parsing file /home/zax/ml-foundation/people-example.csv
PROGRESS: Parsing completed. Parsed 7 lines in 0.017301 secs.

Pandas DataFrame

people_data = DataFrame(df) people_data


In [18]:
myFeatures = ['First Name', 'Last Name', 'age']

In [22]:
df[myFeatures]


Out[22]:
First Name Last Name age
0 Bob Smith 24
1 Alice Williams 23
2 Malcolm Jone 22
3 Felix Brown 23
4 Alex Cooper 23
5 Tod Campbell 22
6 Derek Ward 25

Using canvas


In [12]:
gl.canvas.set_target('ipynb')
sf.show(view="Scatter Plot", x="Country", y="age")



In [ ]: