In [1]:
    
import pandas as pd
%matplotlib inline
from sklearn import datasets
from sklearn import tree
import matplotlib.pyplot as plt
    
In [2]:
    
iris = datasets.load_iris() # load iris data set
    
In [3]:
    
x = iris.data[:,2:] # the attributes
y = iris.target # the target variable
    
In [4]:
    
dt = tree.DecisionTreeClassifier()
    
In [5]:
    
dt = dt.fit(x,y)
    
In [6]:
    
from sklearn.cross_validation import cross_val_score
    
In [7]:
    
# http://scikit-learn.org/stable/modules/cross_validation.html#computing-cross-validated-metrics
scores = cross_val_score(dt,x,y,cv=10) #We're passing in our values and getting an array of values back
    
In [8]:
    
import numpy as np
    
In [9]:
    
np.mean(scores) #here we get our average result
    
    Out[9]:
In [ ]: