Apply logistic regression to categorize whether a county had high mortality rate due to contamination

1. Import the necessary packages to read in the data, plot, and create a logistic regression model


In [1]:
import pandas as pd
%matplotlib inline
import numpy as np
from sklearn.linear_model import LogisticRegression

2. Read in the hanford.csv file in the data/ folder


In [10]:
df = pd.read_csv("hanford.csv")
df


Out[10]:
County Exposure Mortality
0 Umatilla 2.49 147.1
1 Morrow 2.57 130.1
2 Gilliam 3.41 129.9
3 Sherman 1.25 113.5
4 Wasco 1.62 137.5
5 HoodRiver 3.83 162.3
6 Portland 11.64 207.5
7 Columbia 6.41 177.9
8 Clatsop 8.34 210.3

3. Calculate the basic descriptive statistics on the data


In [7]:
df.describe()


Out[7]:
Exposure Mortality
count 9.000000 9.000000
mean 4.617778 157.344444
std 3.491192 34.791346
min 1.250000 113.500000
25% 2.490000 130.100000
50% 3.410000 147.100000
75% 6.410000 177.900000
max 11.640000 210.300000

4. Find a reasonable threshold to say exposure is high and recode the data


In [15]:
df['High_Exposure'] = df['Exposure'].apply(lambda x:1 if x > 3.41 else 0)

In [ ]:


In [ ]:

5. Create a logistic regression model


In [12]:
lm = LogisticRegression()

In [13]:
x = np.asarray(dataset[['Mortality']])
y = np.asarray(dataset['Exposure'])


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-13-af357e1ebf96> in <module>()
----> 1 x = np.asarray(dataset[['Mortality']])
      2 y = np.asarray(dataset['Exposure'])

NameError: name 'dataset' is not defined

In [14]:
lm = lm.fit(x,y)


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-14-0fc46e0387ae> in <module>()
----> 1 lm = lm.fit(x,y)

NameError: name 'x' is not defined

6. Predict whether the mortality rate (Cancer per 100,000 man years) will be high at an exposure level of 50


In [ ]:


In [ ]: