In [1]:
import pandas as pd
%matplotlib inline
import numpy as np
from sklearn.linear_model import LogisticRegression
In [10]:
df = pd.read_csv("hanford.csv")
df
Out[10]:
In [7]:
df.describe()
Out[7]:
In [15]:
df['High_Exposure'] = df['Exposure'].apply(lambda x:1 if x > 3.41 else 0)
In [ ]:
In [ ]:
In [12]:
lm = LogisticRegression()
In [13]:
x = np.asarray(dataset[['Mortality']])
y = np.asarray(dataset['Exposure'])
In [14]:
lm = lm.fit(x,y)
In [ ]:
In [ ]: