In [1]:
import pandas as pd
%matplotlib inline
import numpy as np
from sklearn.linear_model import LogisticRegression
In [2]:
df = pd.read_csv("hanford.csv")
In [3]:
df
Out[3]:
In [4]:
df.describe()
Out[4]:
In [10]:
df['Exposure'].max() - df['Exposure'].min()
Out[10]:
In [11]:
df['Mortality'].max() - df['Mortality'].min()
Out[11]:
In [12]:
df['Exposure'].quantile(q=0.25)
Out[12]:
In [ ]:
df['Exposure'].quantile(q=0.25)
In [13]:
df['Exposure'].quantile(q=0.5)
Out[13]:
In [14]:
df['Exposure'].quantile(q=0.75)
Out[14]:
In [20]:
iqr_ex = df['Exposure'].quantile(q=0.75) - df['Exposure'].quantile(q=0.25)
iqr_ex
Out[20]:
In [16]:
df['Mortality'].quantile(q=0.25)
Out[16]:
In [17]:
df['Mortality'].quantile(q=0.5)
Out[17]:
In [18]:
df['Mortality'].quantile(q=0.75)
Out[18]:
In [22]:
iqr_mort = df['Mortality'].quantile(q=0.75) - df['Mortality'].quantile(q=0.25)
iqr_mort
Out[22]:
In [23]:
df.std()
Out[23]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: