In [1]:
import pandas as pd
%matplotlib inline

In [2]:
from sklearn import datasets
from pandas.tools.plotting import scatter_matrix

In [3]:
import matplotlib.pyplot as plt

In [4]:
iris = datasets.load_iris() # load iris data set

In [5]:
x = iris.data[:,2:] # the attributes
y = iris.target # the target variable

In [6]:
x


Out[6]:
array([[ 1.4,  0.2],
       [ 1.4,  0.2],
       [ 1.3,  0.2],
       [ 1.5,  0.2],
       [ 1.4,  0.2],
       [ 1.7,  0.4],
       [ 1.4,  0.3],
       [ 1.5,  0.2],
       [ 1.4,  0.2],
       [ 1.5,  0.1],
       [ 1.5,  0.2],
       [ 1.6,  0.2],
       [ 1.4,  0.1],
       [ 1.1,  0.1],
       [ 1.2,  0.2],
       [ 1.5,  0.4],
       [ 1.3,  0.4],
       [ 1.4,  0.3],
       [ 1.7,  0.3],
       [ 1.5,  0.3],
       [ 1.7,  0.2],
       [ 1.5,  0.4],
       [ 1. ,  0.2],
       [ 1.7,  0.5],
       [ 1.9,  0.2],
       [ 1.6,  0.2],
       [ 1.6,  0.4],
       [ 1.5,  0.2],
       [ 1.4,  0.2],
       [ 1.6,  0.2],
       [ 1.6,  0.2],
       [ 1.5,  0.4],
       [ 1.5,  0.1],
       [ 1.4,  0.2],
       [ 1.5,  0.1],
       [ 1.2,  0.2],
       [ 1.3,  0.2],
       [ 1.5,  0.1],
       [ 1.3,  0.2],
       [ 1.5,  0.2],
       [ 1.3,  0.3],
       [ 1.3,  0.3],
       [ 1.3,  0.2],
       [ 1.6,  0.6],
       [ 1.9,  0.4],
       [ 1.4,  0.3],
       [ 1.6,  0.2],
       [ 1.4,  0.2],
       [ 1.5,  0.2],
       [ 1.4,  0.2],
       [ 4.7,  1.4],
       [ 4.5,  1.5],
       [ 4.9,  1.5],
       [ 4. ,  1.3],
       [ 4.6,  1.5],
       [ 4.5,  1.3],
       [ 4.7,  1.6],
       [ 3.3,  1. ],
       [ 4.6,  1.3],
       [ 3.9,  1.4],
       [ 3.5,  1. ],
       [ 4.2,  1.5],
       [ 4. ,  1. ],
       [ 4.7,  1.4],
       [ 3.6,  1.3],
       [ 4.4,  1.4],
       [ 4.5,  1.5],
       [ 4.1,  1. ],
       [ 4.5,  1.5],
       [ 3.9,  1.1],
       [ 4.8,  1.8],
       [ 4. ,  1.3],
       [ 4.9,  1.5],
       [ 4.7,  1.2],
       [ 4.3,  1.3],
       [ 4.4,  1.4],
       [ 4.8,  1.4],
       [ 5. ,  1.7],
       [ 4.5,  1.5],
       [ 3.5,  1. ],
       [ 3.8,  1.1],
       [ 3.7,  1. ],
       [ 3.9,  1.2],
       [ 5.1,  1.6],
       [ 4.5,  1.5],
       [ 4.5,  1.6],
       [ 4.7,  1.5],
       [ 4.4,  1.3],
       [ 4.1,  1.3],
       [ 4. ,  1.3],
       [ 4.4,  1.2],
       [ 4.6,  1.4],
       [ 4. ,  1.2],
       [ 3.3,  1. ],
       [ 4.2,  1.3],
       [ 4.2,  1.2],
       [ 4.2,  1.3],
       [ 4.3,  1.3],
       [ 3. ,  1.1],
       [ 4.1,  1.3],
       [ 6. ,  2.5],
       [ 5.1,  1.9],
       [ 5.9,  2.1],
       [ 5.6,  1.8],
       [ 5.8,  2.2],
       [ 6.6,  2.1],
       [ 4.5,  1.7],
       [ 6.3,  1.8],
       [ 5.8,  1.8],
       [ 6.1,  2.5],
       [ 5.1,  2. ],
       [ 5.3,  1.9],
       [ 5.5,  2.1],
       [ 5. ,  2. ],
       [ 5.1,  2.4],
       [ 5.3,  2.3],
       [ 5.5,  1.8],
       [ 6.7,  2.2],
       [ 6.9,  2.3],
       [ 5. ,  1.5],
       [ 5.7,  2.3],
       [ 4.9,  2. ],
       [ 6.7,  2. ],
       [ 4.9,  1.8],
       [ 5.7,  2.1],
       [ 6. ,  1.8],
       [ 4.8,  1.8],
       [ 4.9,  1.8],
       [ 5.6,  2.1],
       [ 5.8,  1.6],
       [ 6.1,  1.9],
       [ 6.4,  2. ],
       [ 5.6,  2.2],
       [ 5.1,  1.5],
       [ 5.6,  1.4],
       [ 6.1,  2.3],
       [ 5.6,  2.4],
       [ 5.5,  1.8],
       [ 4.8,  1.8],
       [ 5.4,  2.1],
       [ 5.6,  2.4],
       [ 5.1,  2.3],
       [ 5.1,  1.9],
       [ 5.9,  2.3],
       [ 5.7,  2.5],
       [ 5.2,  2.3],
       [ 5. ,  1.9],
       [ 5.2,  2. ],
       [ 5.4,  2.3],
       [ 5.1,  1.8]])

In [7]:
plt.figure(2, figsize=(8, 6))
plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.CMRmap)
plt.xlabel('Petal length (cm)')
plt.ylabel('Petal width (cm)')


Out[7]:
<matplotlib.text.Text at 0x7fc1ea8c4978>

In [8]:
plt.figure(2, figsize=(8, 6))
plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.CMRmap)
plt.xlabel('Petal length (cm)')
plt.ylabel('Petal width (cm)')
plt.axhline(y=0.8)


Out[8]:
<matplotlib.lines.Line2D at 0x7f49df5861d0>

In [9]:
plt.figure(2, figsize=(8, 6))
plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.CMRmap)
plt.xlabel('Petal length (cm)')
plt.ylabel('Petal width (cm)')
plt.axhline(y=0.8)
plt.axvline(x=2.5)


Out[9]:
<matplotlib.lines.Line2D at 0x7f49df463550>

How do we separate the other two categories?


In [18]:
plt.figure(2, figsize=(8, 6))
plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.CMRmap)
plt.xlabel('Petal length (cm)')
plt.ylabel('Petal width (cm)')
plt.axhline(y=0.8)
plt.axvline(x=2.5)
#add additional lines to make the cuts
plt.axhline(y=1.65)
plt.axvline(x=5)


Out[18]:
<matplotlib.lines.Line2D at 0x7f49df077470>

Wouldn't it be great if the machine could do this for us?


In [19]:
from sklearn import tree

In [20]:
dt = tree.DecisionTreeClassifier()

In [21]:
dt = dt.fit(x,y)

Now what?


In [22]:
from sklearn.externals.six import StringIO
import pydotplus #pip install pydotplus

In [23]:
with open("iris.dot", 'w') as f:
    f = tree.export_graphviz(dt, out_file=f)

In [24]:
import os
os.unlink('iris.dot')

In [25]:
dot_data = StringIO() 
tree.export_graphviz(dt, out_file=dot_data) #brew install graphviz
graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) 
graph.write_pdf("iris.pdf")


Out[25]:
True

In [26]:
from IPython.display import IFrame
IFrame("iris.pdf", width=800, height=800)


Out[26]:

We can also do some feature normalization if we'd like


In [27]:
from sklearn.datasets import load_iris
from sklearn import preprocessing

iris = load_iris()
X = iris.data
y = iris.target
normalized_X = preprocessing.normalize(X) #we normalize the values on a scale of 0 to 1

list(zip(X,normalized_X))


Out[27]:
[(array([ 5.1,  3.5,  1.4,  0.2]),
  array([ 0.80377277,  0.55160877,  0.22064351,  0.0315205 ])),
 (array([ 4.9,  3. ,  1.4,  0.2]),
  array([ 0.82813287,  0.50702013,  0.23660939,  0.03380134])),
 (array([ 4.7,  3.2,  1.3,  0.2]),
  array([ 0.80533308,  0.54831188,  0.2227517 ,  0.03426949])),
 (array([ 4.6,  3.1,  1.5,  0.2]),
  array([ 0.80003025,  0.53915082,  0.26087943,  0.03478392])),
 (array([ 5. ,  3.6,  1.4,  0.2]),
  array([ 0.790965 ,  0.5694948,  0.2214702,  0.0316386])),
 (array([ 5.4,  3.9,  1.7,  0.4]),
  array([ 0.78417499,  0.5663486 ,  0.2468699 ,  0.05808704])),
 (array([ 4.6,  3.4,  1.4,  0.3]),
  array([ 0.78010936,  0.57660257,  0.23742459,  0.0508767 ])),
 (array([ 5. ,  3.4,  1.5,  0.2]),
  array([ 0.80218492,  0.54548574,  0.24065548,  0.0320874 ])),
 (array([ 4.4,  2.9,  1.4,  0.2]),
  array([ 0.80642366,  0.5315065 ,  0.25658935,  0.03665562])),
 (array([ 4.9,  3.1,  1.5,  0.1]),
  array([ 0.81803119,  0.51752994,  0.25041771,  0.01669451])),
 (array([ 5.4,  3.7,  1.5,  0.2]),
  array([ 0.80373519,  0.55070744,  0.22325977,  0.02976797])),
 (array([ 4.8,  3.4,  1.6,  0.2]),
  array([ 0.786991  ,  0.55745196,  0.26233033,  0.03279129])),
 (array([ 4.8,  3. ,  1.4,  0.1]),
  array([ 0.82307218,  0.51442011,  0.24006272,  0.01714734])),
 (array([ 4.3,  3. ,  1.1,  0.1]),
  array([ 0.8025126 ,  0.55989251,  0.20529392,  0.01866308])),
 (array([ 5.8,  4. ,  1.2,  0.2]),
  array([ 0.81120865,  0.55945424,  0.16783627,  0.02797271])),
 (array([ 5.7,  4.4,  1.5,  0.4]),
  array([ 0.77381111,  0.59732787,  0.2036345 ,  0.05430253])),
 (array([ 5.4,  3.9,  1.3,  0.4]),
  array([ 0.79428944,  0.57365349,  0.19121783,  0.05883625])),
 (array([ 5.1,  3.5,  1.4,  0.3]),
  array([ 0.80327412,  0.55126656,  0.22050662,  0.04725142])),
 (array([ 5.7,  3.8,  1.7,  0.3]),
  array([ 0.8068282 ,  0.53788547,  0.24063297,  0.04246464])),
 (array([ 5.1,  3.8,  1.5,  0.3]),
  array([ 0.77964883,  0.58091482,  0.22930848,  0.0458617 ])),
 (array([ 5.4,  3.4,  1.7,  0.2]),
  array([ 0.8173379 ,  0.51462016,  0.25731008,  0.03027177])),
 (array([ 5.1,  3.7,  1.5,  0.4]),
  array([ 0.78591858,  0.57017622,  0.23115252,  0.06164067])),
 (array([ 4.6,  3.6,  1. ,  0.2]),
  array([ 0.77577075,  0.60712493,  0.16864581,  0.03372916])),
 (array([ 5.1,  3.3,  1.7,  0.5]),
  array([ 0.80597792,  0.52151512,  0.26865931,  0.07901744])),
 (array([ 4.8,  3.4,  1.9,  0.2]),
  array([ 0.776114  ,  0.54974742,  0.30721179,  0.03233808])),
 (array([ 5. ,  3. ,  1.6,  0.2]),
  array([ 0.82647451,  0.4958847 ,  0.26447184,  0.03305898])),
 (array([ 5. ,  3.4,  1.6,  0.4]),
  array([ 0.79778206,  0.5424918 ,  0.25529026,  0.06382256])),
 (array([ 5.2,  3.5,  1.5,  0.2]),
  array([ 0.80641965,  0.54278246,  0.23262105,  0.03101614])),
 (array([ 5.2,  3.4,  1.4,  0.2]),
  array([ 0.81609427,  0.5336001 ,  0.21971769,  0.03138824])),
 (array([ 4.7,  3.2,  1.6,  0.2]),
  array([ 0.79524064,  0.54144043,  0.27072022,  0.03384003])),
 (array([ 4.8,  3.1,  1.6,  0.2]),
  array([ 0.80846584,  0.52213419,  0.26948861,  0.03368608])),
 (array([ 5.4,  3.4,  1.5,  0.4]),
  array([ 0.82225028,  0.51771314,  0.22840286,  0.06090743])),
 (array([ 5.2,  4.1,  1.5,  0.1]),
  array([ 0.76578311,  0.60379053,  0.22089897,  0.0147266 ])),
 (array([ 5.5,  4.2,  1.4,  0.2]),
  array([ 0.77867447,  0.59462414,  0.19820805,  0.02831544])),
 (array([ 4.9,  3.1,  1.5,  0.1]),
  array([ 0.81803119,  0.51752994,  0.25041771,  0.01669451])),
 (array([ 5. ,  3.2,  1.2,  0.2]),
  array([ 0.82512295,  0.52807869,  0.19802951,  0.03300492])),
 (array([ 5.5,  3.5,  1.3,  0.2]),
  array([ 0.82699754,  0.52627116,  0.19547215,  0.03007264])),
 (array([ 4.9,  3.1,  1.5,  0.1]),
  array([ 0.81803119,  0.51752994,  0.25041771,  0.01669451])),
 (array([ 4.4,  3. ,  1.3,  0.2]),
  array([ 0.80212413,  0.54690282,  0.23699122,  0.03646019])),
 (array([ 5.1,  3.4,  1.5,  0.2]),
  array([ 0.80779568,  0.53853046,  0.23758697,  0.03167826])),
 (array([ 5. ,  3.5,  1.3,  0.3]),
  array([ 0.80033301,  0.56023311,  0.20808658,  0.04801998])),
 (array([ 4.5,  2.3,  1.3,  0.3]),
  array([ 0.86093857,  0.44003527,  0.24871559,  0.0573959 ])),
 (array([ 4.4,  3.2,  1.3,  0.2]),
  array([ 0.78609038,  0.57170209,  0.23225397,  0.03573138])),
 (array([ 5. ,  3.5,  1.6,  0.6]),
  array([ 0.78889479,  0.55222635,  0.25244633,  0.09466737])),
 (array([ 5.1,  3.8,  1.9,  0.4]),
  array([ 0.76693897,  0.57144472,  0.28572236,  0.06015208])),
 (array([ 4.8,  3. ,  1.4,  0.3]),
  array([ 0.82210585,  0.51381615,  0.23978087,  0.05138162])),
 (array([ 5.1,  3.8,  1.6,  0.2]),
  array([ 0.77729093,  0.57915795,  0.24385598,  0.030482  ])),
 (array([ 4.6,  3.2,  1.4,  0.2]),
  array([ 0.79594782,  0.55370283,  0.24224499,  0.03460643])),
 (array([ 5.3,  3.7,  1.5,  0.2]),
  array([ 0.79837025,  0.55735281,  0.22595384,  0.03012718])),
 (array([ 5. ,  3.3,  1.4,  0.2]),
  array([ 0.81228363,  0.5361072 ,  0.22743942,  0.03249135])),
 (array([ 7. ,  3.2,  4.7,  1.4]),
  array([ 0.76701103,  0.35063361,  0.51499312,  0.15340221])),
 (array([ 6.4,  3.2,  4.5,  1.5]),
  array([ 0.74549757,  0.37274878,  0.52417798,  0.17472599])),
 (array([ 6.9,  3.1,  4.9,  1.5]),
  array([ 0.75519285,  0.33928954,  0.53629637,  0.16417236])),
 (array([ 5.5,  2.3,  4. ,  1.3]),
  array([ 0.75384916,  0.31524601,  0.54825394,  0.17818253])),
 (array([ 6.5,  2.8,  4.6,  1.5]),
  array([ 0.7581754 ,  0.32659863,  0.5365549 ,  0.17496355])),
 (array([ 5.7,  2.8,  4.5,  1.3]),
  array([ 0.72232962,  0.35482858,  0.57026022,  0.16474184])),
 (array([ 6.3,  3.3,  4.7,  1.6]),
  array([ 0.72634846,  0.38046824,  0.54187901,  0.18446945])),
 (array([ 4.9,  2.4,  3.3,  1. ]),
  array([ 0.75916547,  0.37183615,  0.51127471,  0.15493173])),
 (array([ 6.6,  2.9,  4.6,  1.3]),
  array([ 0.76301853,  0.33526572,  0.53180079,  0.15029153])),
 (array([ 5.2,  2.7,  3.9,  1.4]),
  array([ 0.72460233,  0.37623583,  0.54345175,  0.19508524])),
 (array([ 5. ,  2. ,  3.5,  1. ]),
  array([ 0.76923077,  0.30769231,  0.53846154,  0.15384615])),
 (array([ 5.9,  3. ,  4.2,  1.5]),
  array([ 0.73923462,  0.37588201,  0.52623481,  0.187941  ])),
 (array([ 6. ,  2.2,  4. ,  1. ]),
  array([ 0.78892752,  0.28927343,  0.52595168,  0.13148792])),
 (array([ 6.1,  2.9,  4.7,  1.4]),
  array([ 0.73081412,  0.34743622,  0.56308629,  0.16772783])),
 (array([ 5.6,  2.9,  3.6,  1.3]),
  array([ 0.75911707,  0.3931142 ,  0.48800383,  0.17622361])),
 (array([ 6.7,  3.1,  4.4,  1.4]),
  array([ 0.76945444,  0.35601624,  0.50531337,  0.16078153])),
 (array([ 5.6,  3. ,  4.5,  1.5]),
  array([ 0.70631892,  0.37838513,  0.5675777 ,  0.18919257])),
 (array([ 5.8,  2.7,  4.1,  1. ]),
  array([ 0.75676497,  0.35228714,  0.53495455,  0.13047672])),
 (array([ 6.2,  2.2,  4.5,  1.5]),
  array([ 0.76444238,  0.27125375,  0.55483721,  0.18494574])),
 (array([ 5.6,  2.5,  3.9,  1.1]),
  array([ 0.76185188,  0.34011245,  0.53057542,  0.14964948])),
 (array([ 5.9,  3.2,  4.8,  1.8]),
  array([ 0.6985796 ,  0.37889063,  0.56833595,  0.21312598])),
 (array([ 6.1,  2.8,  4. ,  1.3]),
  array([ 0.77011854,  0.35349703,  0.50499576,  0.16412362])),
 (array([ 6.3,  2.5,  4.9,  1.5]),
  array([ 0.74143307,  0.29421947,  0.57667016,  0.17653168])),
 (array([ 6.1,  2.8,  4.7,  1.2]),
  array([ 0.73659895,  0.33811099,  0.56754345,  0.14490471])),
 (array([ 6.4,  2.9,  4.3,  1.3]),
  array([ 0.76741698,  0.34773582,  0.51560829,  0.15588157])),
 (array([ 6.6,  3. ,  4.4,  1.4]),
  array([ 0.76785726,  0.34902603,  0.51190484,  0.16287881])),
 (array([ 6.8,  2.8,  4.8,  1.4]),
  array([ 0.76467269,  0.31486523,  0.53976896,  0.15743261])),
 (array([ 6.7,  3. ,  5. ,  1.7]),
  array([ 0.74088576,  0.33173989,  0.55289982,  0.18798594])),
 (array([ 6. ,  2.9,  4.5,  1.5]),
  array([ 0.73350949,  0.35452959,  0.55013212,  0.18337737])),
 (array([ 5.7,  2.6,  3.5,  1. ]),
  array([ 0.78667474,  0.35883409,  0.48304589,  0.13801311])),
 (array([ 5.5,  2.4,  3.8,  1.1]),
  array([ 0.76521855,  0.33391355,  0.52869645,  0.15304371])),
 (array([ 5.5,  2.4,  3.7,  1. ]),
  array([ 0.77242925,  0.33706004,  0.51963422,  0.14044168])),
 (array([ 5.8,  2.7,  3.9,  1.2]),
  array([ 0.76434981,  0.35581802,  0.51395936,  0.15814134])),
 (array([ 6. ,  2.7,  5.1,  1.6]),
  array([ 0.70779525,  0.31850786,  0.60162596,  0.1887454 ])),
 (array([ 5.4,  3. ,  4.5,  1.5]),
  array([ 0.69333409,  0.38518561,  0.57777841,  0.1925928 ])),
 (array([ 6. ,  3.4,  4.5,  1.6]),
  array([ 0.71524936,  0.40530797,  0.53643702,  0.19073316])),
 (array([ 6.7,  3.1,  4.7,  1.5]),
  array([ 0.75457341,  0.34913098,  0.52932761,  0.16893434])),
 (array([ 6.3,  2.3,  4.4,  1.3]),
  array([ 0.77530021,  0.28304611,  0.54147951,  0.15998258])),
 (array([ 5.6,  3. ,  4.1,  1.3]),
  array([ 0.72992443,  0.39103094,  0.53440896,  0.16944674])),
 (array([ 5.5,  2.5,  4. ,  1.3]),
  array([ 0.74714194,  0.33960997,  0.54337595,  0.17659719])),
 (array([ 5.5,  2.6,  4.4,  1.2]),
  array([ 0.72337118,  0.34195729,  0.57869695,  0.15782644])),
 (array([ 6.1,  3. ,  4.6,  1.4]),
  array([ 0.73260391,  0.36029701,  0.55245541,  0.1681386 ])),
 (array([ 5.8,  2.6,  4. ,  1.2]),
  array([ 0.76262994,  0.34186859,  0.52595168,  0.1577855 ])),
 (array([ 5. ,  2.3,  3.3,  1. ]),
  array([ 0.76986879,  0.35413965,  0.5081134 ,  0.15397376])),
 (array([ 5.6,  2.7,  4.2,  1.3]),
  array([ 0.73544284,  0.35458851,  0.55158213,  0.1707278 ])),
 (array([ 5.7,  3. ,  4.2,  1.2]),
  array([ 0.73239618,  0.38547167,  0.53966034,  0.15418867])),
 (array([ 5.7,  2.9,  4.2,  1.3]),
  array([ 0.73446047,  0.37367287,  0.5411814 ,  0.16750853])),
 (array([ 6.2,  2.9,  4.3,  1.3]),
  array([ 0.75728103,  0.3542121 ,  0.52521104,  0.15878473])),
 (array([ 5.1,  2.5,  3. ,  1.1]),
  array([ 0.78258054,  0.38361791,  0.4603415 ,  0.16879188])),
 (array([ 5.7,  2.8,  4.1,  1.3]),
  array([ 0.7431482 ,  0.36505526,  0.5345452 ,  0.16948994])),
 (array([ 6.3,  3.3,  6. ,  2.5]),
  array([ 0.65387747,  0.34250725,  0.62274045,  0.25947519])),
 (array([ 5.8,  2.7,  5.1,  1.9]),
  array([ 0.69052512,  0.32145135,  0.60718588,  0.22620651])),
 (array([ 7.1,  3. ,  5.9,  2.1]),
  array([ 0.71491405,  0.30207636,  0.59408351,  0.21145345])),
 (array([ 6.3,  2.9,  5.6,  1.8]),
  array([ 0.69276796,  0.31889319,  0.61579374,  0.1979337 ])),
 (array([ 6.5,  3. ,  5.8,  2.2]),
  array([ 0.68619022,  0.31670318,  0.61229281,  0.232249  ])),
 (array([ 7.6,  3. ,  6.6,  2.1]),
  array([ 0.70953708,  0.28008043,  0.61617694,  0.1960563 ])),
 (array([ 4.9,  2.5,  4.5,  1.7]),
  array([ 0.67054118,  0.34211284,  0.61580312,  0.23263673])),
 (array([ 7.3,  2.9,  6.3,  1.8]),
  array([ 0.71366557,  0.28351098,  0.61590317,  0.17597233])),
 (array([ 6.7,  2.5,  5.8,  1.8]),
  array([ 0.71414125,  0.26647062,  0.61821183,  0.19185884])),
 (array([ 7.2,  3.6,  6.1,  2.5]),
  array([ 0.69198788,  0.34599394,  0.58626751,  0.24027357])),
 (array([ 6.5,  3.2,  5.1,  2. ]),
  array([ 0.71562645,  0.3523084 ,  0.56149152,  0.22019275])),
 (array([ 6.4,  2.7,  5.3,  1.9]),
  array([ 0.71576546,  0.30196356,  0.59274328,  0.21249287])),
 (array([ 6.8,  3. ,  5.5,  2.1]),
  array([ 0.71718148,  0.31640359,  0.58007326,  0.22148252])),
 (array([ 5.7,  2.5,  5. ,  2. ]),
  array([ 0.6925518 ,  0.30375079,  0.60750157,  0.24300063])),
 (array([ 5.8,  2.8,  5.1,  2.4]),
  array([ 0.67767924,  0.32715549,  0.59589036,  0.28041899])),
 (array([ 6.4,  3.2,  5.3,  2.3]),
  array([ 0.69589887,  0.34794944,  0.57629125,  0.25008866])),
 (array([ 6.5,  3. ,  5.5,  1.8]),
  array([ 0.70610474,  0.3258945 ,  0.59747324,  0.1955367 ])),
 (array([ 7.7,  3.8,  6.7,  2.2]),
  array([ 0.69299099,  0.34199555,  0.60299216,  0.19799743])),
 (array([ 7.7,  2.6,  6.9,  2.3]),
  array([ 0.70600618,  0.2383917 ,  0.63265489,  0.21088496])),
 (array([ 6. ,  2.2,  5. ,  1.5]),
  array([ 0.72712585,  0.26661281,  0.60593821,  0.18178146])),
 (array([ 6.9,  3.2,  5.7,  2.3]),
  array([ 0.70558934,  0.32722984,  0.58287815,  0.23519645])),
 (array([ 5.6,  2.8,  4.9,  2. ]),
  array([ 0.68307923,  0.34153961,  0.59769433,  0.24395687])),
 (array([ 7.7,  2.8,  6.7,  2. ]),
  array([ 0.71486543,  0.25995106,  0.62202576,  0.18567933])),
 (array([ 6.3,  2.7,  4.9,  1.8]),
  array([ 0.73122464,  0.31338199,  0.56873028,  0.20892133])),
 (array([ 6.7,  3.3,  5.7,  2.1]),
  array([ 0.69595601,  0.3427843 ,  0.59208198,  0.21813547])),
 (array([ 7.2,  3.2,  6. ,  1.8]),
  array([ 0.71529453,  0.31790868,  0.59607878,  0.17882363])),
 (array([ 6.2,  2.8,  4.8,  1.8]),
  array([ 0.72785195,  0.32870733,  0.56349829,  0.21131186])),
 (array([ 6.1,  3. ,  4.9,  1.8]),
  array([ 0.71171214,  0.35002236,  0.57170319,  0.21001342])),
 (array([ 6.4,  2.8,  5.6,  2.1]),
  array([ 0.69594002,  0.30447376,  0.60894751,  0.22835532])),
 (array([ 7.2,  3. ,  5.8,  1.6]),
  array([ 0.73089855,  0.30454106,  0.58877939,  0.1624219 ])),
 (array([ 7.4,  2.8,  6.1,  1.9]),
  array([ 0.72766159,  0.27533141,  0.59982915,  0.18683203])),
 (array([ 7.9,  3.8,  6.4,  2. ]),
  array([ 0.71578999,  0.34430405,  0.5798805 ,  0.18121266])),
 (array([ 6.4,  2.8,  5.6,  2.2]),
  array([ 0.69417747,  0.30370264,  0.60740528,  0.2386235 ])),
 (array([ 6.3,  2.8,  5.1,  1.5]),
  array([ 0.72366005,  0.32162669,  0.58582004,  0.17230001])),
 (array([ 6.1,  2.6,  5.6,  1.4]),
  array([ 0.69385414,  0.29574111,  0.63698085,  0.15924521])),
 (array([ 7.7,  3. ,  6.1,  2.3]),
  array([ 0.73154399,  0.28501714,  0.57953485,  0.21851314])),
 (array([ 6.3,  3.4,  5.6,  2.4]),
  array([ 0.67017484,  0.36168166,  0.59571097,  0.2553047 ])),
 (array([ 6.4,  3.1,  5.5,  1.8]),
  array([ 0.69804799,  0.338117  ,  0.59988499,  0.196326  ])),
 (array([ 6. ,  3. ,  4.8,  1.8]),
  array([ 0.71066905,  0.35533453,  0.56853524,  0.21320072])),
 (array([ 6.9,  3.1,  5.4,  2.1]),
  array([ 0.72415258,  0.32534391,  0.56672811,  0.22039426])),
 (array([ 6.7,  3.1,  5.6,  2.4]),
  array([ 0.69997037,  0.32386689,  0.58504986,  0.25073566])),
 (array([ 6.9,  3.1,  5.1,  2.3]),
  array([ 0.73337886,  0.32948905,  0.54206264,  0.24445962])),
 (array([ 5.8,  2.7,  5.1,  1.9]),
  array([ 0.69052512,  0.32145135,  0.60718588,  0.22620651])),
 (array([ 6.8,  3.2,  5.9,  2.3]),
  array([ 0.69193502,  0.32561648,  0.60035539,  0.23403685])),
 (array([ 6.7,  3.3,  5.7,  2.5]),
  array([ 0.68914871,  0.33943145,  0.58629069,  0.25714504])),
 (array([ 6.7,  3. ,  5.2,  2.3]),
  array([ 0.72155725,  0.32308533,  0.56001458,  0.24769876])),
 (array([ 6.3,  2.5,  5. ,  1.9]),
  array([ 0.72965359,  0.28954508,  0.57909015,  0.22005426])),
 (array([ 6.5,  3. ,  5.2,  2. ]),
  array([ 0.71653899,  0.3307103 ,  0.57323119,  0.22047353])),
 (array([ 6.2,  3.4,  5.4,  2.3]),
  array([ 0.67467072,  0.36998072,  0.58761643,  0.25028107])),
 (array([ 5.9,  3. ,  5.1,  1.8]),
  array([ 0.69025916,  0.35097923,  0.5966647 ,  0.21058754]))]

In [ ]: