The writer of this code wants to count the mean and median article length for recent articles on gay marriage in the New York Times. This code has several issues, including errors. When they checked their custom functions against the numpy functions, they noticed some discrepancies. Fix the code so it executes properly, retrieves the articles, and outputs the correct result from the custom functions, compared to the numpy functions.
In [9]:
import requests # a better package than urllib2
In [10]:
def my_mean(input_list):
list_sum = 0
list_count = 0
for el in input_list:
intValue = int(el)
list_sum += intValue #+=: list_sum = list_sum + intValue
list_count += 1
return list_sum / list_count
In [11]:
def my_median(input_list):
list_length = len(input_list)
sorted_list = sorted(input_list)
if list_length % 2 == 1:
return sorted_list[int(len(list_length)+1)/2] # if it's an odd list, we return the central number
else:
mean_idx = int(list_length/2)
return (sorted_list[mean_idx] + sorted_list[mean_idx-1]) / 2
In [12]:
input_list=[1,6,3,9,16]
new=sorted(input_list)
In [15]:
API_key = "ffaf60d7d82258e112dd4fb2b5e4e2d6:3:72421680"
In [16]:
url = "http://api.nytimes.com/svc/search/v2/articlesearch.json?q=gay+marriage&api-key=%s" % API_key
In [17]:
r = requests.get(url)
In [18]:
wc_list = []
for article in r.json()['response']['docs']:
wc_list.append(article['word_count'])
In [19]:
wc_list = [int(i) for i in wc_list if i != None] # missing conversion to int type
wc_list
Out[19]:
In [20]:
my_mean(wc_list)
Out[20]:
In [21]:
import numpy as np
In [22]:
np.mean(wc_list)
Out[22]:
In [23]:
my_median(wc_list)
In [24]:
np.median(wc_list)
Out[24]:
In [ ]: