The writer of this code wants to count the mean and median article length for recent articles on gay marriage in the New York Times. This code has several issues, including errors. When they checked their custom functions against the numpy functions, they noticed some discrepancies. Fix the code so it executes properly, retrieves the articles, and outputs the correct result from the custom functions, compared to the numpy functions.


In [1]:
import requests # a better package than urllib2

In [2]:
def my_mean(input_list):
    list_sum = 0
    list_count = 0
    for el in input_list:
        intValue = int(el)
        list_sum += intValue
        list_count += 1
    return list_sum / list_count

In [3]:
def my_median(input_list):
    list_length = len(input_list)
    sorted_list = sorted(input_list)

    if list_length % 2 == 1: # odd list: we return the central number
        return sorted_list[int(list_length/2)]

    else: # even list: we sum the two central numbers
        mean_idx = int(list_length/2)
        return (sorted_list[mean_idx] + sorted_list[mean_idx-1]) / 2

In [4]:
api_key = "ffaf60d7d82258e112dd4fb2b5e4e2d6:3:72421680"

In [5]:
url = "http://api.nytimes.com/svc/search/v2/articlesearch.json?q=gay+marriage&api-key=%s" % api_key # wrong variable case

In [6]:
r = requests.get(url)

In [7]:
wc_list = []
for article in r.json()['response']['docs']:
    wc_list.append(article['word_count'])

In [8]:
wc_list = [int(i) for i in wc_list if i != None] # missing conversion to int type
wc_list


Out[8]:
[25, 920, 576, 868, 1101, 684, 588, 367, 1358]

In [9]:
my_mean(wc_list)


Out[9]:
720.7777777777778

In [10]:
import numpy as np

In [11]:
np.mean(wc_list)


Out[11]:
720.77777777777783

In [12]:
my_median(wc_list)


Out[12]:
684

In [13]:
np.median(wc_list)


Out[13]:
684.0

In [ ]: