We will be training a PyTorch model that can classify the gender of a human face image. This PyTorch model is a simple convolutional neural network (CNN) with 3 convolutional layers and 2 fully connected layers using the UTKFace dataset. We will be training for 5 epochs for the purpose of this demo.
In [ ]:
config_file_url = ''
github_token = ''
In [ ]:
!pip install kfp --upgrade
!pip install ai_pipeline_params --upgrade
In [ ]:
import kfp
from kfp import compiler
import kfp
from kfp import components
from kfp import dsl
from kfp import notebook
# Run client with KUBEFLOW_PIPELINE_LINK if this notebook server
# is running on localhost without enterprise gateway.
# KUBEFLOW_PIPELINE_LINK = ''
# client = kfp.Client(KUBEFLOW_PIPELINE_LINK)
client = kfp.Client()
In [ ]:
# define secret name that contains the credentials for this pipeline, and load components
secret_name = 'kfp-creds'
configuration_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/commons/config/component.yaml')
train_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/ffdl/train/component.yaml')
serve_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/ffdl/serve/component.yaml')
In [ ]:
import kfp.dsl as dsl
import ai_pipeline_params as params
# create pipeline
@dsl.pipeline(
name='FfDL pipeline',
description='A pipeline for machine learning workflow using Fabric for Deep Learning and Seldon.'
)
def ffdlPipeline(
GITHUB_TOKEN=github_token,
CONFIG_FILE_URL=config_file_url,
model_def_file_path='gender-classification.zip',
manifest_file_path='manifest.yml',
model_deployment_name='gender-classifier',
model_class_name='ThreeLayerCNN',
model_class_file='gender_classification.py'
):
"""A pipeline for end to end machine learning workflow."""
get_configuration = configuration_op(
token = GITHUB_TOKEN,
url = CONFIG_FILE_URL,
name = secret_name
)
train = train_op(
model_def_file_path,
manifest_file_path
).apply(params.use_ai_pipeline_params(secret_name))
serve = serve_op(
train.output,
model_deployment_name,
model_class_name,
model_class_file
).apply(params.use_ai_pipeline_params(secret_name))
In [ ]:
# Below are the default parameters for the above pipeline,
# you can customize these parameters for each pipeline run.
parameters={'config-file-url': config_file_url,
'github-token': github_token,
'model-def-file-path': 'gender-classification.zip',
'manifest-file-path': 'manifest.yml',
'model-deployment-name': 'gender-classifier',
'model-class-name': 'ThreeLayerCNN',
'model-class-file': 'gender_classification.py'}
run = client.create_run_from_pipeline_func(ffdlPipeline, arguments=parameters).run_info
import IPython
html = ('<p id="link"> </p> <script> document.getElementById("link").innerHTML = "Actual Run link <a href=//" + location.hostname + "%s/#/runs/details/%s target=_blank >here</a>"; </script>'
% (client._get_url_prefix(), run.id))
IPython.display.HTML(html)
In [ ]: