The Eora 26 database is available at http://www.worldmrio.com . You need to register there and can then download the files from http://www.worldmrio.com/simplified .
To parse a single year do:
In [1]:
import pymrio
In [2]:
eora_storage = '/tmp/mrios/eora26'
In [3]:
eora = pymrio.parse_eora26(year=2005, path=eora_storage)
Eora includes (almost) all countries:
In [4]:
eora.get_regions()
Out[4]:
This can easily be aggregated to, for example, the OECD/NON_OECD countries with the help of the country converter coco.
In [5]:
import country_converter as coco
In [6]:
eora.aggregate(region_agg = coco.agg_conc(original_countries='Eora',
aggregates=['OECD'],
missing_countries='NON_OECD')
)
Out[6]:
In [7]:
eora.get_regions()
Out[7]:
In [8]:
eora.calc_all()
Out[8]:
In [9]:
import matplotlib.pyplot as plt
with plt.style.context('ggplot'):
eora.Q.plot_account(('Total cropland area', 'Total'), figsize=(8,5))
plt.show()
See the other notebooks for further information on aggregation and file io.