/Users/ethanmarx/anaconda/envs/NUREU17/lib/python3.6/site-packages/pandas/core/generic.py:1299: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block1_values] [items->['band', 'source', 'telescope']]
return pytables.to_hdf(path_or_buf, key, self, **kwargs)
/Users/ethanmarx/anaconda/envs/NUREU17/lib/python3.6/site-packages/numpy/lib/function_base.py:3858: RuntimeWarning: Invalid value encountered in median
r = func(a, **kwargs)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:293: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(self.time, self.flux, degree, w=self.flux_err)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:293: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(self.time, self.flux, degree, w=self.flux_err)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:293: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(self.time, self.flux, degree, w=self.flux_err)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)
/Users/ethanmarx/Documents/LSST/NUREU17/LSST/SuperNovaLightCurves/Lightcurve_class.py:204: RankWarning: Polyfit may be poorly conditioned
Coeffs = np.polyfit(time_del, flux_del, degree, w=flux_err_del)