This code is provided as supplementary material of the lecture Machine Learning and Optimization in Communications (MLOC).
This code illustrates
In [1]:
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import numpy as np
from matplotlib import pyplot as plt
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("We are using the following device for learning:",device)
Dataloader are powerful instruments, which help you to prepare your data. E.g. you can shuffle your data, transform data (standardize/normalize), divide it into batches, ... For more information see https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
In our case, we just use the dataloader to download the Dataset and preprocess the data on our own.
In [2]:
batch_size_train = 60000 # Samples per Training Batch
batch_size_test = 10000 # just create one large test dataset (MNIST test dataset has 10.000 Samples)
# Get Training and Test Dataset with a Dataloader
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('./files/', train=True, download=True,
transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor()])),
batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('./files/', train=False, download=True,
transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor()])),
batch_size=batch_size_test, shuffle=True)
# We are only interessted in the data and not in the targets
for idx, (data, targets) in enumerate(train_loader):
x_train = data[:,0,:,:]
for idx, (data, targets) in enumerate(test_loader):
x_test = data[:,0,:,:]
image_size = x_train.shape[1]
x_test_flat = torch.reshape(x_test, (x_test.shape[0], image_size*image_size))
Plot 8 random images
In [3]:
plt.figure(figsize=(16,2))
for k in range(8):
plt.subplot(1,8,k+1)
plt.imshow(x_train[np.random.randint(x_train.shape[0])], interpolation='nearest', cmap='binary')
plt.xticks(())
plt.yticks(())
As explained in the lecture, we are using Stochstic Quantization. This means for the training process (def forward), we employ stochastic quantization in forward path but during back-propagation, we consider the quantization device as being
non-existent (.detach()). While validating and testing, use deterministic quantization (def test)
Note: .detach() removes the tensor from the computation graph
In [4]:
# target compression rate
bit_per_image = 24
# BSC error probability
Pe = 0.05
hidden_encoder_1 = 500
hidden_encoder_2 = 250
hidden_encoder_3 = 100
hidden_encoder = [hidden_encoder_1, hidden_encoder_2, hidden_encoder_3]
hidden_decoder_1 = 100
hidden_decoder_2 = 250
hidden_decoder_3 = 500
hidden_decoder = [hidden_decoder_1, hidden_decoder_2, hidden_decoder_3]
class Autoencoder(nn.Module):
def __init__(self, hidden_encoder, hidden_decoder, image_size, bit_per_image):
super(Autoencoder, self).__init__()
# Define Transmitter Layer: Linear function, M input neurons (symbols), 2 output neurons (real and imaginary part)
self.We1 = nn.Linear(image_size*image_size, hidden_encoder[0])
self.We2 = nn.Linear(hidden_encoder[0], hidden_encoder[1])
self.We3 = nn.Linear(hidden_encoder[1], hidden_encoder[2])
self.We4 = nn.Linear(hidden_encoder[2], bit_per_image)
# Define Receiver Layer: Linear function, 2 input neurons (real and imaginary part), M output neurons (symbols)
self.Wd1 = nn.Linear(bit_per_image,hidden_decoder[0])
self.Wd2 = nn.Linear(hidden_decoder[0], hidden_decoder[1])
self.Wd3 = nn.Linear(hidden_decoder[1], hidden_decoder[2])
self.Wd4 = nn.Linear(hidden_decoder[2], image_size*image_size)
# Non-linearity (used in transmitter and receiver)
self.activation_function = nn.ELU()
self.sigmoid = nn.Sigmoid()
self.softsign = nn.Softsign()
def forward(self, training_data, Pe):
encoded = self.encoder(training_data)
# random binarization in training
ti = encoded.clone()
compressed = ti + (self.binarizer(ti) - ti).detach()
# add error pattern (flip the bit or not)
error_tensor = torch.distributions.Bernoulli(Pe * torch.ones_like(compressed)).sample()
received = torch.mul( compressed, 1 - 2*error_tensor)
reconstructed = self.decoder(received)
return reconstructed
def test(self, valid_data, Pe):
encoded_test = self.encoder(valid_data)
compressed_test = self.binarizer_deterministic(encoded_test)
error_tensor_test = torch.distributions.Bernoulli(Pe * torch.ones_like(compressed_test)).sample()
received_test = torch.mul( compressed_test, 1 - 2*error_tensor_test )
reconstructed_test = self.decoder(received_test)
loss_test = torch.mean(torch.square(valid_data - reconstructed_test))
reconstructed_test_noerror = self.decoder(compressed_test)
return reconstructed_test
def encoder(self, batch):
temp = self.activation_function(self.We1(batch))
temp = self.activation_function(self.We2(temp))
temp = self.activation_function(self.We3(temp))
output = self.softsign(self.We4(temp))
return output
def decoder(self, batch):
temp = self.activation_function(self.Wd1(batch))
temp = self.activation_function(self.Wd2(temp))
temp = self.activation_function(self.Wd3(temp))
output = self.sigmoid(self.Wd4(temp))
return output
def binarizer(self, input):
# This is the stochastic quatizer which we use for the training
prob = torch.div(torch.add(input, 1.0), 2.0)
bernoulli = torch.distributions.Bernoulli(prob) # torch.distributions.bernoulli.
# bernoulli = tf.distributions.Bernoulli(probs=prob, dtype=tf.float32)
return 2*bernoulli.sample() - 1
def binarizer_deterministic(self, input):
# This is the deteministic quatizer which we use for
return torch.sign(input)
Helper function to get a random mini-batch of images
In [5]:
def get_batch(x, batch_size):
idxs = np.random.randint(0, x.shape[0], (batch_size))
return torch.stack([torch.reshape(x[k], (-1,)) for k in idxs])
In [6]:
batch_size = 250
model = Autoencoder(hidden_encoder, hidden_decoder, image_size, bit_per_image)
model.to(device)
# Mean Squared Error loss
loss_fn = nn.MSELoss()
# Adam Optimizer
optimizer = optim.Adam(model.parameters())
print('Start Training') # Training loop
for it in range(25000): # Original paper does 50k iterations
mini_batch = torch.Tensor(get_batch(x_train, batch_size)).to(device)
# Propagate (training) data through the net
reconstructed = model(mini_batch, Pe)
# compute loss
loss = loss_fn(mini_batch, reconstructed)
# compute gradients
loss.backward()
# Adapt weights
optimizer.step()
# reset gradients
optimizer.zero_grad()
# Evaulation with the test data
if it % 1000 == 0:
reconstructed_test = model.test(x_test_flat.to(device), Pe)
loss_test = torch.mean(torch.square(x_test_flat.to(device) - reconstructed_test))
print('It %d: Loss %1.5f' % (it, loss_test.detach().cpu().numpy().squeeze()))
print('Training finished')
In [7]:
valid_images = model.test(x_test_flat.to(device), Pe).detach().cpu().numpy()
valid_binary = 0.5*(1 - model.binarizer(model.encoder(x_test_flat.to(device)))).detach().cpu().numpy() # from bipolar (BPSK) to binary
# show 8 images and their reconstructed versions
plt.figure(figsize=(16,4))
idxs = np.random.randint(x_test.shape[0],size=8)
for k in range(8):
plt.subplot(2,8,k+1)
plt.imshow(np.reshape(x_test_flat[idxs[k]], (image_size,image_size)), interpolation='nearest', cmap='binary')
plt.xticks(())
plt.yticks(())
plt.subplot(2,8,k+1+8)
plt.imshow(np.reshape(valid_images[idxs[k]], (image_size,image_size)), interpolation='nearest', cmap='binary')
plt.xticks(())
plt.yticks(())
# print binary data of the images
for k in range(8):
print('Image %d: ' % (k+1), valid_binary[idxs[k],:])
Generate 8 arbitary images just by sampling random bit strings
In [8]:
random_data = 1-2*np.random.randint(2,size=(8,bit_per_image))
generated_images = model.decoder(torch.Tensor(random_data).to(device)).detach().cpu().numpy()
plt.figure(figsize=(16,2))
for k in range(8):
plt.subplot(1,8,k+1)
plt.imshow(np.reshape(generated_images[k],(image_size,image_size)), interpolation='nearest', cmap='binary')
plt.xticks(())
plt.yticks(())