In [10]:
from tqdm import tqdm
import numpy as np
import tensorflow as tf
import matplotlib as plt
%matplotlib inline
Define layers
In [6]:
# a simple convolutional layer
def conv_layer(input, channels_in, channels_out):
w = tf.Variable(tf.zeros([5,5, channels_in, channels_out]))
b = tf.Variable(tf.zeros([channels_out]))
conv = tf.nn.conv2d(input, w, strides=[1,1,1,1], padding="SAME")
act = tf.nn.relu(conv + b)
return act
# add a fully connected layer
def fc_layer(input, channels_in, channels_out):
w = tf.Variable(tf.zeros([channels_in, channels_out]))
b = tf.Variable(tf.zeros(channels_out))
act = tf.nn.relu(tf.matmul(input, w) + b)
return act
Setup placeholders, and reshape the data
In [7]:
x = tf.placeholder(tf.float32, shape=[None, 784])
y = tf.placeholder(tf.float32, shape=[None,10])
x_image = tf.reshape(x, [-1, 28, 28, 1])
Create the network
In [8]:
conv1 = conv_layer(x_image, 1, 32)
pool1 = tf.nn.max_pool(conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
conv2 = conv_layer(pool1, 32, 64)
pool2 = tf.nn.max_pool(conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
flattened = tf.reshape(pool2, [-1, 7 * 7 * 64])
fc1 = fc_layer(flattened, 7*7*64, 1024)
logits = fc_layer(fc1, 1024, 10)
Loss & Training
In [9]:
# Computer cross entropy as our loss function
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
# Use an AdamOptimizer to train the network
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# computer the accurary
correct_prediction = tf.equal(tf.argmax(logits,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
In [14]:
# initiliaze all the variables
sess.run(tf.global_variables_initializer())
# train for 2000 steps
for i in range(2000):
batch = mnist.train.next_batch(100)
# Occasionally report accuracy
if i % 500 == 0:
[train_accuracy] = sess.run([accuracy], feed_dict={x:batch[0], y_true:batch[1]})
print("step %d training accuracy %g" % (i, train_accuracy))
# run the training step
sess.run(train_step, feed_dict={x:batch[0], y_true:batch[1]})
code from talk:
In [15]:
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import tensorflow as tf
import urllib
LOGDIR = '/tmp/mnist_tutorial/'
GIST_URL = 'https://gist.githubusercontent.com/dandelionmane/4f02ab8f1451e276fea1f165a20336f1/raw/dfb8ee95b010480d56a73f324aca480b3820c180'
### MNIST EMBEDDINGS ###
mnist = tf.contrib.learn.datasets.mnist.read_data_sets(train_dir=LOGDIR + 'data', one_hot=True)
### Get a sprite and labels file for the embedding projector ###
urllib.urlretrieve(GIST_URL + 'labels_1024.tsv', LOGDIR + 'labels_1024.tsv')
urllib.urlretrieve(GIST_URL + 'sprite_1024.png', LOGDIR + 'sprite_1024.png')
def conv_layer(input, size_in, size_out, name="conv"):
with tf.name_scope(name):
w = tf.Variable(tf.truncated_normal([5, 5, size_in, size_out], stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B")
conv = tf.nn.conv2d(input, w, strides=[1, 1, 1, 1], padding="SAME")
act = tf.nn.relu(conv + b)
tf.summary.histogram("weights", w)
tf.summary.histogram("biases", b)
tf.summary.histogram("activations", act)
return tf.nn.max_pool(act, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
def fc_layer(input, size_in, size_out, name="fc"):
with tf.name_scope(name):
w = tf.Variable(tf.truncated_normal([size_in, size_out], stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B")
act = tf.nn.relu(tf.matmul(input, w) + b)
tf.summary.histogram("weights", w)
tf.summary.histogram("biases", b)
tf.summary.histogram("activations", act)
return act
def mnist_model(learning_rate, use_two_conv, use_two_fc, hparam):
tf.reset_default_graph()
sess = tf.Session()
# Setup placeholders, and reshape the data
x = tf.placeholder(tf.float32, shape=[None, 784], name="x")
x_image = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', x_image, 3)
y = tf.placeholder(tf.float32, shape=[None, 10], name="labels")
if use_two_conv:
conv1 = conv_layer(x_image, 1, 32, "conv1")
conv_out = conv_layer(conv1, 32, 64, "conv2")
else:
conv1 = conv_layer(x_image, 1, 64, "conv")
conv_out = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
flattened = tf.reshape(conv_out, [-1, 7 * 7 * 64])
if use_two_fc:
fc1 = fc_layer(flattened, 7 * 7 * 64, 1024, "fc1")
embedding_input = fc1
embedding_size = 1024
logits = fc_layer(fc1, 1024, 10, "fc2")
else:
embedding_input = flattened
embedding_size = 7*7*64
logits = fc_layer(flattened, 7*7*64, 10, "fc")
with tf.name_scope("xent"):
xent = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=y), name="xent")
tf.summary.scalar("xent", xent)
with tf.name_scope("train"):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(xent)
with tf.name_scope("accuracy"):
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar("accuracy", accuracy)
summ = tf.summary.merge_all()
embedding = tf.Variable(tf.zeros([1024, embedding_size]), name="test_embedding")
assignment = embedding.assign(embedding_input)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter(LOGDIR + hparam)
writer.add_graph(sess.graph)
config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig()
embedding_config = config.embeddings.add()
embedding_config.tensor_name = embedding.name
embedding_config.sprite.image_path = LOGDIR + 'sprite_1024.png'
embedding_config.metadata_path = LOGDIR + 'labels_1024.tsv'
# Specify the width and height of a single thumbnail.
embedding_config.sprite.single_image_dim.extend([28, 28])
tf.contrib.tensorboard.plugins.projector.visualize_embeddings(writer, config)
for i in range(2001):
batch = mnist.train.next_batch(100)
if i % 5 == 0:
[train_accuracy, s] = sess.run([accuracy, summ], feed_dict={x: batch[0], y: batch[1]})
writer.add_summary(s, i)
if i % 500 == 0:
sess.run(assignment, feed_dict={x: mnist.test.images[:1024], y: mnist.test.labels[:1024]})
saver.save(sess, os.path.join(LOGDIR, "model.ckpt"), i)
sess.run(train_step, feed_dict={x: batch[0], y: batch[1]})
def make_hparam_string(learning_rate, use_two_fc, use_two_conv):
conv_param = "conv=2" if use_two_conv else "conv=1"
fc_param = "fc=2" if use_two_fc else "fc=1"
return "lr_%.0E,%s,%s" % (learning_rate, conv_param, fc_param)
def main():
# You can try adding some more learning rates
for learning_rate in [1E-4]:
# Include "False" as a value to try different model architectures
for use_two_fc in [True]:
for use_two_conv in [True]:
# Construct a hyperparameter string for each one (example: "lr_1E-3,fc=2,conv=2)
hparam = make_hparam_string(learning_rate, use_two_fc, use_two_conv)
print('Starting run for %s' % hparam)
# Actually run with the new settings
mnist_model(learning_rate, use_two_fc, use_two_conv, hparam)
if __name__ == '__main__':
main()
In [ ]: