In [1]:
import dmdd
import numpy as np
%matplotlib inline


WARNING:root:pymultinest not imported!
WARNING:root:DMDD_MAIN_PATH environment variable not defined, defaulting to:   ~/.dmdd

Do theory plots look different if they start at Q = 5 (the minimum energy) instead of Q = 0, like I've been doing? Q = 0 is impossible to see, but the strongest/brightest part of the graph is along that line, so perhaps I'm looking for something that is not there.


In [2]:
# shortcut for scattering models corresponding to rates coded in rate_UV:
anapole_model = dmdd.UV_Model('Anapole', ['mass','sigma_anapole'])
SI_model = dmdd.UV_Model('SI', ['mass','sigma_si'])

print 'model: {}, parameters: {}.'.format(anapole_model.name, anapole_model.param_names)
print 'model: {}, parameters: {}.'.format(SI_model.name, SI_model.param_names)


model: Anapole, parameters: ['mass', 'sigma_anapole'].
model: SI, parameters: ['mass', 'sigma_si'].

In [3]:
# intialize an Experiment with XENON target, to be passed to Simulation_AM:
xe = dmdd.Experiment('1xe', 'xenon', 5, 80, 1000, dmdd.eff.efficiency_unit, energy_resolution=True)

In [4]:
xe_lowQ = dmdd.Experiment('1xe', 'xenon', 5, 20, 1000, dmdd.eff.efficiency_unit, energy_resolution=True)

In [5]:
xe_midQ = dmdd.Experiment('1xe', 'xenon', 5, 40, 1000, dmdd.eff.efficiency_unit, energy_resolution=True)

In [6]:
xe_si = dmdd.Simulation_AM('SI', xe, SI_model, 
                        {'mass':50.,'sigma_si':75.5}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([80.]), 
                        Tmin = 0, Tmax = 365, sigma_si = 75.5, 
                        element = 'xenon', force_sim = True)
#no points plotted here- just to get a new theory plot to see if it looks different starting from Q=5 and not Q=0


Simulation data and/or pickle file does not exist. Forcing simulation.


197
simulated: 197 events (expected 169).

In [6]:
xe_si = dmdd.Simulation_AM('SI', xe, SI_model, 
                        {'mass':50.,'sigma_si':75.5}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([80.]), 
                        Tmin = 0, Tmax = 365, sigma_si = 75.5, 
                        element = 'xenon', force_sim = True)
#no points plotted here- just to get a new theory plot to see if it looks different starting from Q=5 and not Q=0


Simulation data and/or pickle file does not exist. Forcing simulation.


simulated: 177 events (expected 169).

In [6]:
xe_si = dmdd.Simulation_AM('SI', xe_lowQ, SI_model, 
                        {'mass':50.,'sigma_si':75.5}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([20.]), 
                        Tmin = 0, Tmax = 365, sigma_si = 75.5, 
                        element = 'xenon', force_sim = True)
#no points plotted here- just to get a new theory plot to see if it looks different starting from Q=5 and not Q=0


Simulation data and/or pickle file does not exist. Forcing simulation.


148
simulated: 148 events (expected 135).

In [ ]:
xe_si = dmdd.Simulation_AM('SI', xe_lowQ, SI_model, 
                        {'mass':50.,'sigma_si':75.5}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([80.]), 
                        Tmin = 0, Tmax = 365, sigma_si = 75.5, 
                        element = 'xenon', force_sim = True)
#no points plotted here- just to get a new theory plot to see if it looks different starting from Q=5 and not Q=0


Simulation data and/or pickle file does not exist. Forcing simulation.


simulated: 145 events (expected 135).

In [ ]:
xe_anapole = dmdd.Simulation_AM('Anapole', xe_lowQ, anapole_model, 
                        {'mass':50.,'sigma_anapole':44.25}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([80.]), 
                        Tmin = 0, Tmax = 365, sigma_anapole = 44.25, 
                        element = 'xenon', force_sim = True)
#no points plotted here- just to get a new theory plot to see if it looks different starting from Q=5 and not Q=0

In [ ]: