In [1]:
import os
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from pylab import rcParams
rcParams['figure.figsize'] = 16, 6
rcParams.update({'font.size': 15})
from nideep.eval.learning_curve import LearningCurve
from nideep.eval.eval_utils import Phase
import nideep.eval.log_utils as lu
print("Done importing")
In [16]:
log_path = '../test_data/caffe.hostname.username.log.INFO.20150917-163712.31405'
e = LearningCurve(log_path)
e.parse()
for phase in [Phase.TRAIN, Phase.TEST]:
num_iter = e.list('NumIters', phase)
loss = e.list('loss', phase)
plt.plot(num_iter, loss, label='on %s set' % (phase,))
plt.xlabel('iteration')
# format x-axis ticks
ticks, _ = plt.xticks()
plt.xticks(ticks, ["%dK" % int(t/1000) for t in ticks])
plt.ylabel('loss')
plt.title(e.name())
plt.legend()
plt.figure()
num_iter = e.list('NumIters', phase)
acc = e.list('accuracy', phase)
plt.plot(num_iter, acc, label=e.name())
plt.xlabel('iteration')
plt.ylabel('accuracy')
plt.title("on %s set" % (phase,))
plt.legend(loc='lower right')
plt.grid()
In [ ]: