http://wiki.jikexueyuan.com/project/tensorflow-zh/get_started/os_setup.html
你可以使用我们提供的 Pip, Docker, Virtualenv, Anaconda 或 源码编译的方法安装 TensorFlow.
Pip 是一个 Python 的软件包安装与管理工具.
在安装 TensorFlow 过程中要涉及安装或升级的包详见 列表
首先安装 pip (或 Python3 的 pip3 ):
# Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev
# Mac OS X
$ sudo easy_install pip
# Ubuntu/Linux 64-bit, CPU only, Python 2.7:
$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0-cp27-none-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 2.7. Requires CUDA toolkit 7.5 and CuDNN v4.
# For other versions, see "Install from sources" below.
$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.8.0-cp27-none-linux_x86_64.whl
# Mac OS X, CPU only:
$ sudo easy_install --upgrade six
$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.8.0-py2-none-any.whl
# Ubuntu/Linux 64-bit, CPU only, Python 3.4:
$ sudo pip3 install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0-cp34-cp34m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.4. Requires CUDA toolkit 7.5 and CuDNN v4.
# For other versions, see "Install from sources" below.
$ sudo pip3 install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.8.0-cp34-cp34m-linux_x86_64.whl
# Mac OS X, CPU only:
$ sudo easy_install --upgrade six
$ sudo pip3 install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.8.0-py3-none-any.whl
备注:如果之前安装过 TensorFlow < 0.7.1 的版本,应该先使用 pip uninstall 卸载 TensorFlow 和 protobuf ,保证获取的是一个最新 protobuf 依赖下的安装包.
之后可以测试一下.
Anaconda 是一个集成许多第三方科学计算库的 Python 科学计算环境,Anaconda 使用 conda 作为自己的包管理工具,同时具有自己的计算环境,类似 Virtualenv.
和 Virtualenv 一样,不同 Python 工程需要的依赖包,conda 将他们存储在不同的地方。 TensorFlow 上安装的 Anaconda 不会对之前安装的 Python 包进行覆盖.
安装 Anaconda
建立一个 conda 计算环境
激活环境,使用 conda 安装 TensorFlow
安装成功后,每次使用 TensorFlow 的时候需要激活 conda 环境
参考 Anaconda 的下载页面的指导
建立一个 conda 计算环境名字叫tensorflow:
# Python 2.7
$ conda create -n tensorflow python=2.7
# Python 3.4
$ conda create -n tensorflow python=3.4
激活tensorflow环境,然后使用其中的 pip 安装 TensorFlow. 当使用easy_install使用--ignore-installed标记防止错误的产生。
$ source activate tensorflow
(tensorflow)$ # Your prompt should change
# Ubuntu/Linux 64-bit, CPU only, Python 2.7:
(tensorflow)$ pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0rc0-cp27-none-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 2.7. Requires CUDA toolkit 7.5 and CuDNN v4.
# For other versions, see "Install from sources" below.
(tensorflow)$ pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.8.0rc0-cp27-none-linux_x86_64.whl
# Mac OS X, CPU only:
(tensorflow)$ pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.8.0rc0-py2-none-any.whl
$ source activate tensorflow
(tensorflow)$ # Your prompt should change
# Ubuntu/Linux 64-bit, CPU only, Python 3.4:
(tensorflow)$ pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0rc0-cp34-cp34m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.4. Requires CUDA toolkit 7.5 and CuDNN v4.
# For other versions, see "Install from sources" below.
(tensorflow)$ pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.8.0rc0-cp34-cp34m-linux_x86_64.whl
# Mac OS X, CPU only:
(tensorflow)$ pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.8.0rc0-py3-none-any.whl
conda 环境激活后,你可以测试
当你不用 TensorFlow 的时候,关闭环境:
(tensorflow)$ source deactivate
$ # Your prompt should change back
再次使用的时候再激活 :-)
$ source activate tensorflow
(tensorflow)$ # Your prompt should change.
# Run Python programs that use TensorFlow.
...
# When you are done using TensorFlow, deactivate the environment.
(tensorflow)$ source deactivate
如果你使用 pip 二进制包安装了开启 GPU 支持的 TensorFlow, 你必须确保 系统里安装了正确的 CUDA sdk 和 CUDNN 版本. 请参间 CUDA 安装教程
你还需要设置 LD_LIBRARY_PATH 和 CUDA_HOME 环境变量. 可以考虑将下面的命令 添加到 ~/.bash_profile 文件中, 这样每次登陆后自动生效. 注意, 下面的命令 假定 CUDA 安装目录为 /usr/local/cuda:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
export CUDA_HOME=/usr/local/cuda
打开一个 python 终端:
In [2]:
import tensorflow as tf
hello_tf = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello_tf))
In [4]:
a = tf.constant(10)
b = tf.constant(32)
print(sess.run(a+b))
In [ ]: