In [4]:
%matplotlib inline

from __future__ import division, print_function

import numpy as np
import matplotlib.pyplot as plt

import SHS_data
import evaluation
import util

In [2]:
cliques_by_name, cliques_by_uri = SHS_data.read_cliques()

In [5]:
ratio = (1, 9, 90)
train_cliques, test_cliques, val_cliques = util.split_train_test_validation(cliques_by_name, ratio=ratio)

In [9]:
train_uris = util.uris_from_clique_dict(train_cliques)
test_chroma = SHS_data.read_chroma(train_uris[0])

Delta chroma


In [12]:
delta_chroma = np.diff(test_chroma, axis=0)

In [14]:
test_chroma.shape, delta_chroma.shape


Out[14]:
((519, 12), (518, 12))

In [23]:
fake_chroma = np.zeros((15,12))
fake_chroma[0,0] = 1
plt.imshow(fake_chroma, interpolation='nearest', cmap='viridis')


Out[23]:
<matplotlib.image.AxesImage at 0x1105ef050>

In [25]:
plt.imshow(np.roll(fake_chroma, 1, axis=1), interpolation='nearest', cmap='viridis')


Out[25]:
<matplotlib.image.AxesImage at 0x11093d810>

In [ ]: