In [68]:
from juliaset import JuliaSet
Load additional libraries needed for plotting and profiling.
In [69]:
# Math libraries
import numpy as np
from math import sqrt
# Matplotlib plotting libraries
import matplotlib.pyplot as plt
%matplotlib inline
# Bokeh plotting libraries
import bokeh.plotting as blt
blt.output_notebook()
Extend JuliaSet class with additional functionality.
In [70]:
class JuliaSetPlot(JuliaSet):
"""Extend JuliaSet to add plotting functionality"""
def __init__(self, *args, **kwargs):
# Invoke constructor for JuliaSet first, unaltered
JuliaSet.__init__(self, *args, **kwargs)
# Add another attribute: a rendered image array
self.img = np.array([])
def get_dim(self):
"""Return linear number of points in axis"""
return int(4.0 / self._d)
def render(self):
"""Render image as square array of ints"""
if not self.set.any(): self.generate()
#if not self.set: self.generate()
# Convert inefficient list to efficient numpy array
self.img = np.array(self.set)
# Reshape array into a 2d complex plane
dim = int(sqrt(self.img.size))
#dim = self.img.size
print(self.img.size)
self.img = np.reshape(self.img, (dim,dim)).T
def show(self):
"""Use matplotlib to plot image as an efficient mesh"""
if not self.img.size: self.render()
plt.figure(1, figsize=(12,9))
'''fig = plt.figure()
#ax = fig.add_subplot(1, 1, 1)
#data = np.random.random((N,7))
x = data[:,0]
y = data[:,1]
points = data[:,2:4]'''
xy = np.linspace(-2,2,int(sqrt(self.img.size)))
#xy = np.linspace(-2,2,self.get_dim())
plt.pcolormesh(xy, xy, self.img, cmap=plt.cm.hot)
plt.colorbar()
#ax.scatter(x, y, color = rgb)
plt.show()
def interact(self):
"""Use bokeh to plot an interactive image"""
from matplotlib.colors import rgb2hex
if not self.img.size: self.render()
# Mimic matplotlib "hot" color palette
colormap = plt.cm.get_cmap("hot")
bokehpalette = [rgb2hex(m) for m in colormap(np.arange(colormap.N))]
# Create bokeh figure
f = blt.figure(x_range=(-2,2), y_range=(-2,2), plot_width=600, plot_height=600)
f.image(image=[self.img], x=[-2], y=[-2], dw=[4], dh=[4], palette=bokehpalette, dilate=True)
blt.show(f)
Visualize a Julia set using matplotlib.
In [71]:
#j = JuliaSetPlot(0 + 0j)
#j = JuliaSetPlot(-1 + 0j)
#j = JuliaSetPlot(0.3 + 0j)
#j = JuliaSetPlot(-.8 + .2j)
j = JuliaSetPlot(-.835 + .2321j)
#j = JuliaSetPlot(-1.037 + 0.17j)
%time j.set_spacing(0.005)
%time j.generate()
%time j.show()
Visualize a different Julia set using Bokeh as an interactive Javascript plot.
In [72]:
#j = JuliaSetPlot(0 + 0j)
#j = JuliaSetPlot(-1 + 0j)
#j = JuliaSetPlot(0.3 + 0j)
#j = JuliaSetPlot(-.8 + .2j)
j = JuliaSetPlot(-.835 + .2321j)
#j = JuliaSetPlot(-1.037 + 0.17j)
#j = JuliaSetPlot(-0.624 + 0.435j)
%time j.set_spacing(0.005)
%time j.generate()
%time j.interact()
In [73]:
%prun j.generate()
In [74]:
%load_ext line_profiler
%lprun -f j.generate j.generate()
In [ ]: