In [16]:
import numpy as np
class JuliaSet(object):
def __init__(self, c, n=100):
self.c = c
self.n = n
self._d = 0.001
self._complexplane=[]
self.set=[]
def juliamap(self, z):
return z**2 + self.c
def iterate(self, z):
m = 0
while True:
z = self.juliamap(z)
m +=1
if abs(z)>2:
return m
elif m>=self.n:
return 0
def drange(self, start, stop, step):
r = start
while r <= stop:
yield r
r += step
# Generate evenly spaced values over x and y planes
def get_complexplane(self):
self._complexplane = []
_range=self.drange(-2, 2, self._d)
for x in self.drange(-2, 2, self._d):
for y in self.drange(-2, 2, self._d):
np.append(_complexplane, complex(x,y))
def set_spacing(self, d):
self._d = d
self.get_complexplane()
def generate(self):
for x in self._complexplane:
np.append(self.iterate(x), self.iterate(x))
return self.set
In [17]:
from juliaset import JuliaSet
# Math libraries
import numpy as np
from math import sqrt
# Matplotlib plotting libraries
import matplotlib.pyplot as plt
%matplotlib inline
# Bokeh plotting libraries
import bokeh.plotting as blt
blt.output_notebook()
class JuliaSetPlot(JuliaSet):
"""Extend JuliaSet to add plotting functionality"""
def __init__(self, *args, **kwargs):
# Invoke constructor for JuliaSet first, unaltered
JuliaSet.__init__(self, *args, **kwargs)
# Add another attribute: a rendered image array
self.img = np.array([])
def get_dim(self):
"""Return linear number of points in axis"""
return int(4.0 / self._d)
def render(self):
"""Render image as square array of ints"""
if not self.set: self.generate()
# Convert inefficient list to efficient numpy array
self.img = np.array(self.set)
# Reshape array into a 2d complex plane
dim = int(sqrt(len(self.img)))
self.img = np.reshape(self.img, (dim,dim)).T
def show(self):
"""Use matplotlib to plot image as an efficient mesh"""
if not self.img.size: self.render()
plt.figure(1, figsize=(12,9))
xy = np.linspace(-2,2,self.get_dim())
plt.pcolormesh(xy, xy, self.img, cmap=plt.cm.hot)
plt.colorbar()
plt.show()
def interact(self):
"""Use bokeh to plot an interactive image"""
from matplotlib.colors import rgb2hex
if not self.img.size: self.render()
# Mimic matplotlib "hot" color palette
colormap = plt.cm.get_cmap("hot")
bokehpalette = [rgb2hex(m) for m in colormap(np.arange(colormap.N))]
# Create bokeh figure
f = blt.figure(x_range=(-2,2), y_range=(-2,2), plot_width=600, plot_height=600)
f.image(image=[self.img], x=[-2], y=[-2], dw=[4], dh=[4], palette=bokehpalette, dilate=True)
blt.show(f)
In [ ]:
j = JuliaSetPlot( -0.835 - 0.2321j)
%time j.set_spacing(0.006)
%time j.generate()
%time j.interact()
In [ ]:
j = JuliaSetPlot(0)
%time j.set_spacing(0.006)
%time j.generate()
%time j.interact()
In [ ]: