In [12]:
from sympy import init_session
init_session()
a , mu, k, t = symbols('a, mu, k, t')
Given is a PDF of a Branching Erlang (or Coxian) Distribution.
In [13]:
pdf = a * mu * exp(-mu*t)+ (((1-a)*(mu**k))/(factorial(k-1))) * (t**(k-1))*exp(-mu*t)
pdf
Out[13]:
In [14]:
cdf = integrate(pdf, t)
cdf
Out[14]:
In [16]:
eq = diff(cdf,t) - pdf
simplify(eq)
Out[16]:
In [ ]: