In [1]:
# set up Python environment: numpy for numerical routines, and matplotlib for plotting
import numpy as np
import matplotlib.pyplot as plt
# display plots in this notebook
%matplotlib inline
# set display defaults
plt.rcParams['figure.figsize'] = (5,5) # large images
plt.rcParams['image.interpolation'] = 'nearest' # don't interpolate: show square pixels
plt.rcParams['image.cmap'] = 'gray' # use grayscale output rather than a (potentially misleading) color heatmap
# The caffe module needs to be on the Python path;
# We added it to PYTHONPATH (e.g. from ~/.bash_profile)
import caffe
# If you get "No module named _caffe", either you have not built pycaffe or you have the wrong path.
We will use the model from https://github.com/metalbubble/CAM
In [2]:
# We'll need to download the model weights
# Make sure you run this script to download the model weights file
# experiments/visualization/CAM/models/download.sh
In [3]:
cam_path = 'visualization/CAM'
model_definition = cam_path + '/models/deploy_googlenetCAM.prototxt'
model_weights = cam_path + '/models/imagenet_googleletCAM_train_iter_120000.caffemodel'
caffe.set_mode_gpu()
net = caffe.Net(model_definition,
model_weights,
caffe.TEST)
print 'Net model sucessfully loaded'
In [4]:
# load the mean places image
mu = np.load('Emotion6/places205CNN_mean.npy')
mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values
print 'mean-subtracted values:', zip('BGR', mu)
# create transformer for the input called 'data'
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1)) # move image channels to outermost dimension
transformer.set_mean('data', mu) # subtract the dataset-mean value in each channel
transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255]
transformer.set_channel_swap('data', (2,1,0)) # swap channels from RGB to BGR
In [5]:
def classify_image(image_file):
image = caffe.io.load_image(image_file)
net.blobs['data'].data[...] = transformer.preprocess('data', image)
# perform classification
net.forward()
def show_image(image_file):
image = caffe.io.load_image(image_file)
plt.imshow(image)
plt.show()
sample_image = 'visualization/CAM/img2.jpg'
show_image(sample_image)
In [6]:
classify_image(sample_image)
conv_blobs = net.blobs['CAM_conv'].data[0]
weight_matrix = net.params['CAM_fc'][0].data
net_output = net.blobs['prob'].data[0]
In [7]:
def weights_for_class(class_idx):
return weight_matrix[class_idx,:]
c = conv_blobs.reshape([conv_blobs.shape[0], conv_blobs.shape[1]*conv_blobs.shape[2]])
import scipy
def show_CAM(img, idx):
w = weights_for_class(idx)
CAM = c.transpose().dot(w)
print 'Class no. %i Activation Mapping' % idx
mask = CAM.reshape(14,14)
threshold = 0.5*mask.max()
mask[mask < threshold] = 0
mask = scipy.misc.imresize(mask,img.shape[:2])
masked = img * mask[:,:,None]
f, axarr = plt.subplots(1,2)
axarr[0].imshow(img)
axarr[1].imshow(masked/masked.max())
plt.show()
top5_ids = np.argsort(net_output)[-5:][::-1]
image = caffe.io.load_image(sample_image)
for class_id in top5_ids:
show_CAM(image, class_id)
plt.show()
Next steps: