In [1]:
# %load /home/sjkim/.jupyter/head.py
# %%writefile /home/sjkim/.jupyter/head.py
# %load /home/sjkim/.jupyter/head.py
%matplotlib inline
%load_ext autoreload
%autoreload 2
from importlib import reload
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
In [2]:
from keras.layers import Lambda, Input
from keras.models import Model
x = Input((1,))
y = Lambda(lambda x: x + 1)(x)
m = Model(x, y)
yp = m.predict_on_batch([1, 2, 3])
print("np.array([1,2,3]) + 1:")
print(yp)
In [8]:
from keras.layers import Lambda, Input
from keras.models import Model
def kproc(x):
return x ** 2 + 2 * x + 1
def kshape(input_shape):
return input_shape
x = Input((1,))
y = Lambda(kproc, kshape)(x)
m = Model(x, y)
yp = m.predict_on_batch([1, 2, 3])
print("x**2 + 2 * x + 1: x = np.array([1,2,3]):")
print(yp)
In [7]:
from keras.layers import Lambda, Input
from keras.models import Model
from keras.engine.topology import Layer
class Mult(Layer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def call(self, x):
return x ** 2 + 2 * x + 1
x = Input((1,))
y = Mult()(x)
m = Model(x, y)
yp = m.predict_on_batch([1, 2, 3])
print("x**2 + 2 * x + 1: x = np.array([1,2,3]):")
print(yp)
In [4]:
from keras.layers import Lambda, Input
from keras.models import Model
from keras import backend as K
def kproc_concat(x):
m = K.mean(x, axis=1, keepdims=True)
d1 = K.abs(x - m)
d2 = K.square(x - m)
return K.concatenate([x, d1, d2], axis=1)
def kshape_concat(input_shape):
output_shape = list(input_shape)
output_shape[1] *= 3
return tuple(output_shape)
x = Input((3,))
y = Lambda(kproc_concat, kshape_concat)(x)
m = Model(x, y)
yp = m.predict_on_batch([[1, 2, 3], [3, 4, 8]])
print(yp)
In [34]:
from keras.layers import Lambda, Input
from keras.models import Model
import tensorflow as tf
def kproc_concat(x):
m = tf.reduce_mean(x, axis=1, keep_dims=True)
d1 = tf.abs(x - m)
d2 = tf.square(x - m)
return tf.concat([x, d1, d2], axis=1)
def kshape_concat(input_shape):
output_shape = list(input_shape)
output_shape[1] *= 3
return tuple(output_shape)
x = Input((3,))
y = Lambda(kproc_concat, kshape_concat)(x)
m = Model(x, y)
yp = m.predict_on_batch([[1, 2, 3], [3, 4, 8]])
print(yp)
In [ ]: