Sara the Turtle: Pandas Redux

Recalling the script we wrote earlier to process the ARGOS tracking data for Sara the Turtle. Here, we'll demonstrate how another 3rd party package, namely pandas, can greatly simplify that task.


In [ ]:
#Set the user date
userDate = '7/3/2003'

In [ ]:
#Set the location classes
locClasses = '1','2','3'

In [ ]:
#import the modules
import pandas as pd

In [ ]:
#set a variable to the path where the tracking data lives
dataFilename = '.\Data\Sara.txt'

In [ ]:
#Open the data as a pandas dataframe. 
df = pd.read_csv(dataFilename,
                 comment='#',   #Skip lines that start with '#'
                 delimiter='\t' #Set the delimiter as <tab>
                )

In [ ]:
#Create a mask of user dates
dateMask = df['utc'].str.startswith(userDate)

In [ ]:
#Create a mask of location classe
lcMask = df['lc'].isin(locClasses)

In [ ]:
#Filter the records that match the above masks
dfOutput = df[dateMask & lcMask]

In [ ]:
print "On {}, Sara the turtle was found at:".format(userDate)
for i,row in dfOutput.iterrows():
    print('  {0} deg Lat; {1} deg lon'.format(row['lat1'],row['lon1']))