Previously in 2_fullyconnected.ipynb
and 3_regularization.ipynb
, we trained fully connected networks to classify notMNIST characters.
The goal of this assignment is make the neural network convolutional.
In [1]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
In [2]:
pickle_file = '../notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
Reformat into a TensorFlow-friendly shape:
In [3]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
def reformat(dataset, labels):
dataset = dataset.reshape(
(-1, image_size, image_size, num_channels)).astype(np.float32)
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
In [4]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.
In [5]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1))
layer1_biases = tf.Variable(tf.zeros([depth]))
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1))
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1))
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1))
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
# Model.
def model(data): #data of shape [batch_size, image_size, image_size, num_channels]
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME') # shape of [batch_size, image_size/2, image_size/2, depth]
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')# shape of [batch_size, image_size/4, image_size/4, depth]
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])# shape of [batch_size, image_size/4 * image_size/4* depth]
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) # shape of [batch_size,num_hidden]
return tf.matmul(hidden, layer4_weights) + layer4_biases # shape of [batch_size,num_labels]
# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
test_prediction = tf.nn.softmax(model(tf_test_dataset))
In [6]:
num_steps = 1001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Initialized')
for step in range(num_steps):
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 50 == 0):
print('Minibatch loss at step %d: %f' % (step, l))
print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
print('Validation accuracy: %.1f%%' % accuracy(
valid_prediction.eval(), valid_labels))
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
In [ ]:
# Variables.
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 2 * image_size // 2 * num_channels, num_hidden], stddev=0.1))
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1))
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
# Model.
def model(data):
# Data is shaped of [batch_size, image_size, image_size, num_channels]
hidden = tf.nn.max_pool(data, [1, 2, 2, 1],[1, 2, 2, 1] , padding='SAME') #same shape of [batch_size, image_size/2, image_size/2, num_channels]
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]]) #reshaped into 2D array of [batch_size, image_size/2* image_size/2 * num_channels]
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
Initialized
Minibatch loss at step 0: 2.694045
Minibatch accuracy: 0.0%
Validation accuracy: 7.9%
Minibatch loss at step 50: 1.684043
Minibatch accuracy: 50.0%
Validation accuracy: 65.4%
Minibatch loss at step 100: 0.953076
Minibatch accuracy: 81.2%
Validation accuracy: 70.7%
Minibatch loss at step 150: 0.509777
Minibatch accuracy: 87.5%
Validation accuracy: 76.1%
Minibatch loss at step 200: 0.464738
Minibatch accuracy: 87.5%
Validation accuracy: 78.0%
Minibatch loss at step 250: 0.875403
Minibatch accuracy: 75.0%
Validation accuracy: 78.1%
Minibatch loss at step 300: 0.913955
Minibatch accuracy: 75.0%
Validation accuracy: 80.6%
Minibatch loss at step 350: 0.677745
Minibatch accuracy: 75.0%
Validation accuracy: 80.3%
Minibatch loss at step 400: 0.772082
Minibatch accuracy: 68.8%
Validation accuracy: 80.2%
Minibatch loss at step 450: 0.742608
Minibatch accuracy: 93.8%
Validation accuracy: 81.0%
Minibatch loss at step 500: 0.643120
Minibatch accuracy: 81.2%
Validation accuracy: 80.2%
Minibatch loss at step 550: 0.628266
Minibatch accuracy: 75.0%
Validation accuracy: 80.5%
Minibatch loss at step 600: 0.979889
Minibatch accuracy: 81.2%
Validation accuracy: 80.8%
Minibatch loss at step 650: 0.581403
Minibatch accuracy: 87.5%
Validation accuracy: 81.0%
Minibatch loss at step 700: 0.751648
Minibatch accuracy: 75.0%
Validation accuracy: 80.5%
Minibatch loss at step 750: 0.344367
Minibatch accuracy: 87.5%
Validation accuracy: 81.4%
Minibatch loss at step 800: 0.698404
Minibatch accuracy: 87.5%
Validation accuracy: 81.8%
Minibatch loss at step 850: 0.795159
Minibatch accuracy: 68.8%
Validation accuracy: 81.2%
Minibatch loss at step 900: 0.890547
Minibatch accuracy: 75.0%
Validation accuracy: 80.8%
Minibatch loss at step 950: 1.138554
Minibatch accuracy: 75.0%
Validation accuracy: 81.2%
Minibatch loss at step 1000: 0.733926
Minibatch accuracy: 81.2%
Validation accuracy: 81.4%
Test accuracy: 87.4%
We can see that the max_pool
on its own is not too bad at all, without any convolution and it is much faster to compute.
Try to get the best performance you can using a convolutional net. Look for example at the classic LeNet5 architecture, adding Dropout, and/or adding learning rate decay.
In [ ]:
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1))
layer1_biases = tf.Variable(tf.zeros([depth]))
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1))
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
layer3_weights = tf.Variable(tf.truncated_normal(
[math.ceil(image_size / 16) * math.ceil(image_size /16) * depth, num_hidden], stddev=0.1))
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1))
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME') # shape of [batch_size, image_size/2, image_size/2, depth]: [16, 14, 14, 16]
shape1 = conv.get_shape().as_list()
hidden = tf.nn.relu(conv + layer1_biases)
hidden1 = tf.nn.max_pool(hidden, [1, 2, 2, 1], [1, 2, 2, 1] , padding='SAME') #shape of [batch_size, image_size/4, image_size/4, depth]: [16, 7, 7, 16]
shape2 = hidden1.get_shape().as_list()
conv = tf.nn.conv2d(hidden1, layer2_weights, [1, 2, 2, 1], padding='SAME') #shape of [batch_size, image_size/8, image_size/8, depth]: [16, 4, 4, 16]
shape3 = conv.get_shape().as_list()
hidden = tf.nn.relu(conv + layer2_biases)
hidden2 = tf.nn.max_pool(hidden, [1, 2, 2, 1],[1, 2, 2, 1] , padding='SAME') #same shape of [batch_size, image_size/16, image_size/16, depth]: [16, 2, 2, 16]
shape = hidden2.get_shape().as_list()
reshape = tf.reshape(hidden2, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
Minibatch loss at step 1000: 0.579025
Minibatch accuracy: 81.2%
Validation accuracy: 82.5%
LeNet5 Test accuracy: 88.1%
However, adding the max pooling does reduce the size of layer3_weights
significantly, thus reducing computation time.
Minibatch loss at step 10000: 0.395700
Minibatch accuracy: 87.5%
Validation accuracy: 88.2%
LeNet5 Test accuracy: 93.5%
Only adding dropout at the last layer does not seem to help much
shape = hidden2.get_shape().as_list()
reshape = tf.reshape(hidden2, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
dropout = tf.nn.dropout(hidden, keep_rate) #dropout if applied after activation
return tf.matmul(dropout, layer4_weights) + layer4_biases
# Training computation.
logits = model(tf_train_dataset, keep_rate = 0.5)
output:
Minibatch loss at step 10000: 0.389177
Minibatch accuracy: 81.2%
Validation accuracy: 87.2%
LeNet5 Test accuracy: 92.5%
# Optimizer.
global_step = tf.Variable(0) # count the number of steps taken.
learning_rate = tf.train.exponential_decay(0.1, global_step, 3500, 0.86, staircase=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
Not much help:
Minibatch loss at step 10000: 0.640076
Minibatch accuracy: 75.0%
Validation accuracy: 86.9%
LeNet5 Test accuracy: 92.7%
In [ ]: