[[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]
[ DecisionTreeRegressor(criterion=<sklearn.tree._tree.FriedmanMSE object at 0x1117af540>,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=<mtrand.RandomState object at 0x10afbfb90>,
splitter=<sklearn.tree._tree.PresortBestSplitter object at 0x1112207c0>)]]